# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine.jit.tracing import set_symbolic_shape from megengine.module import LeakyReLU, PReLU def test_leaky_relu(): data = np.array([-8, -12, 6, 10]).astype(np.float32) negative_slope = 0.1 leaky_relu = LeakyReLU(negative_slope) output = leaky_relu(mge.tensor(data)) np_output = np.maximum(0, data) + negative_slope * np.minimum(0, data) np.testing.assert_equal(output.numpy(), np_output) @pytest.mark.parametrize("shape", [(1, 64, 15, 15), (64,)]) @pytest.mark.parametrize("use_symbolic", [False, True]) def test_prelu(shape, use_symbolic): old_flag = set_symbolic_shape(use_symbolic) data = np.random.random(size=shape) num_channel = 1 if len(shape) == 1 else shape[1] prelu = PReLU(num_parameters=num_channel, init=0.25) output = prelu(mge.Tensor(data)) np_output = np.maximum(data, 0) + prelu.weight.numpy() * np.minimum(data, 0) set_symbolic_shape(old_flag) np.testing.assert_allclose(output.numpy(), np_output, atol=1e-5)