# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import pytest import megengine.module as M from megengine import Parameter, tensor from megengine.functional.debug_param import ( get_execution_strategy, set_execution_strategy, ) from megengine.module import ConvTranspose2d, ConvTranspose3d, LocalConv2d @pytest.fixture def reproducible(): old = get_execution_strategy() set_execution_strategy("HEURISTIC_REPRODUCIBLE") yield set_execution_strategy(old) # NOTE: test in module for convenience. should really test in functional @pytest.mark.parametrize( "name", ["Conv1d", "Conv2d", "Conv3d", "ConvTranspose2d", "ConvTranspose3d", "LocalConv2d"], ) def test_conv_dtype_promotion(name, reproducible): N, Ci, Co, K = 2, 16, 32, 3 S = (7,) * int(name[-2]) if "Local" in name: m = getattr(M, name)(Ci, Co, *S, K) else: m = getattr(M, name)(Ci, Co, K) x = tensor(np.random.random(size=(N, Ci) + S).astype("float16")) np.testing.assert_equal(m(x).numpy(), m(x.astype("float32")).numpy())