# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np from megengine import Parameter, tensor from megengine.module import AvgPool2d, MaxPool2d def test_avg_pool2d(): def test_func( batch_size, in_channels, out_channels, in_height, in_width, kernel_size, stride, padding, ): pool = AvgPool2d(kernel_size, stride=stride, padding=padding, mode="average") inp = np.random.normal( size=(batch_size, in_channels, in_height, in_width) ).astype(np.float32) out_height = (in_height + padding * 2 - kernel_size) // stride + 1 out_width = (in_width + padding * 2 - kernel_size) // stride + 1 out = pool(tensor(inp)) inp = np.pad(inp, ((0, 0), (0, 0), (padding, padding), (padding, padding))) expected = np.zeros( (batch_size, out_channels, out_height, out_width), dtype=np.float32, ) for n, c, oh, ow in itertools.product( *map(range, [batch_size, out_channels, out_height, out_width]) ): ih, iw = oh * stride, ow * stride expected[n, c, oh, ow] = np.sum( inp[n, c, ih : ih + kernel_size, iw : iw + kernel_size,] ) / (kernel_size * kernel_size) np.testing.assert_almost_equal(out.numpy(), expected, 1e-5) test_func(10, 4, 4, 5, 5, 2, 2, 1) test_func(10, 4, 4, 6, 6, 2, 2, 0) test_func(10, 16, 16, 14, 14, 2, 2, 0)