/** * \file example/cpp_example/reset_io.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "example.h" #if LITE_BUILD_WITH_MGE using namespace lite; using namespace example; namespace { bool reset_input(const Args& args) { std::string network_path = args.model_path; std::string input_path = args.input_path; lite::Config config; //! create and load the network std::shared_ptr network = std::make_shared(config); network->load_model(network_path); //! set input data to input tensor std::shared_ptr input_tensor = network->get_input_tensor(0); auto layout = input_tensor->get_layout(); auto src_tensor = parse_npy(input_path); void* src = src_tensor->get_memory_ptr(); input_tensor->reset(src, layout); //! forward network->forward(); network->wait(); //! 6. get the output data or read tensor set in network_in std::shared_ptr output_tensor = network->get_output_tensor(0); void* out_data = output_tensor->get_memory_ptr(); size_t out_length = output_tensor->get_tensor_total_size_in_byte() / output_tensor->get_layout().get_elem_size(); float max = -1.0f; float sum = 0.0f; for (size_t i = 0; i < out_length; i++) { float data = static_cast(out_data)[i]; sum += data; if (max < data) max = data; } printf("max=%e, sum=%e\n", max, sum); return true; } bool reset_input_output(const Args& args) { std::string network_path = args.model_path; std::string input_path = args.input_path; lite::Config config; //! create and load the network std::shared_ptr network = std::make_shared(config); network->load_model(network_path); //! set input data to input tensor std::shared_ptr input_tensor = network->get_input_tensor(0); auto layout = input_tensor->get_layout(); auto src_tensor = parse_npy(input_path); void* src = src_tensor->get_memory_ptr(); input_tensor->reset(src, layout); //! set output ptr to store the network output std::shared_ptr output_tensor = network->get_output_tensor(0); auto result_tensor = std::make_shared( LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT}); void* out_data = result_tensor->get_memory_ptr(); output_tensor->reset(out_data, result_tensor->get_layout()); network->forward(); network->wait(); float max = -1.0f; float sum = 0.0f; for (size_t i = 0; i < 1000; i++) { float data = static_cast(out_data)[i]; sum += data; if (max < data) max = data; } printf("max=%e, sum=%e\n", max, sum); return true; } } // namespace REGIST_EXAMPLE("reset_input", reset_input); REGIST_EXAMPLE("reset_input_output", reset_input_output); #endif // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}