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ABSTRACT

The authors describe eighth- and sixth-order polynomial fits to Wexler’s and Hyland-Wexler’s saturation-
vapor-pressure expressions. Fits are provided in both least-squares and relative-error norms. Error analysis is
presented. The authors show that their method is faster in comparison with the reference expressions when

implemented on a CRAY-YMP.

1. Introduction

We present eighth- and sixth-order polynomial fits
to Wexler’s (1976, 1977; hereafter named Wexler) and
Hyland and Wexler’s (1983; hereafter named Hyland-
Wexler) saturation-vapor-pressure expressions (SVP)
over water and ice. Also, fits to the temperature deriv-
ative of SVP are given. Very detailed comparison work
has appeared recently (Gibbins 1990). Therefore, we
do not review SVP formulations but proceed directly
to develop numerical approximations suitable for use
on modern computers. There are several reasons, re-
lated to numerical efficiency and accuracy of current
approximations, for which we performed this work:

e Wexler’s formulations are based on more recent
experimental data than that of Goff and Gratch (1946)
and Goff (1965) (hereafter named Goff-Gratch).

e Polynomials provide good global fits amenable to
vectorized implementation on modern computers. For
example, Gibbins (1990) compared about 60 of the
existing algorithms for SVP and showed that the sixth-
order polynomial fit was the fastest of them all.

e Polynomial fits provided previously by Lowe
(1974) are given in the minmax norm and are not
optimal for typical atmospheric science applications
where relative accuracy is needed. Our polynomial fits
exceed the accuracy of Lowe’s fits.

e We provide eighth-order fits that are an order of
magnitude more accurate in comparison to sixth-order
polynomial fits.

e We extend the temperature range for which our
fits are valid, thus making them more suitable for use
in extreme temperature conditions. This should make
the fits suitable for use in mesoscale and global models,
particularly those used for cirrus cloud simulations.
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2. Reference expressions for SVP and temperature
derivatives of SVP

a. Wexler formulation

The following formulas by Wexler form the basis of
our polynomial fits. Wexler’s formulations are based
on more recent experimental data than that of Goff-
Gratch. The international practical temperature scale
(IPTS-68) is used. The results are based on newer
measurements of the vapor pressure (Stimson 1969)
and on highly accurate measurements of the vapor
pressure of water at its triple point (Guildner et al.
1976).

SVP over water (Pa):
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Coefficients g and k are given in Table 1. Expressions
for derivatives are not provided in the Wexler papers.
We checked the derivatives with the numerical differ-
entiation (Press and Teukolsky 1991) code, and the
results were excellent. This provides confidence in the
numerical behavior of (2.2) and (2.4).

b. Hyland-Wexler formulation

In 1983, Hyland and Wexler published revised values
of the thermodynamic properties of water and moist
air. These values were based in part on information
that became available after Wexler’s 1976 and 1977
papers. The new thermodynamic temperature scale
(TTS) was used with significant changes to IPTS-68.
It should be noted that the TTS scale is a very close
approximation to the very recent temperature scale
ITS-90 (Preston-Thomas 1990). Maximum differences
between TTS and ITS-90 are about 4 mK. Since the
formulation of SVP on the ITS-90 was not available
to us, we decided to fit the Hyland and Wexler ( 1983)
formulas. These expressions are valid ir a more limited
range of temperatures than the Wexler expressions. The
Hyland-Wexler formulas are

3
Z h,‘Ti + h4 lr\T,

i=—1

which is valid for 273.15 <

In ey s = (2.5)
T < 473.15 K, and
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which is valid over the range 173.16 < T < 273.16 K.
Coefficients 4 and m are given in Table 2.

3. Polynomial fits

a. Basic concepts

We present a fit of Wexler’s expressions (2.1)-(2.4)
with the polynomial

e = @1 + @ (T = To) + + * * @y (T = To)", (3.1)

where T is a conversion between degrees Celsius and
kelvins. It is Tg = 273.15 for Wexler and Hyland-

TABLE 1. Coeflicients of Wexler’s (1976, 1977) expressions
for saturation vapor pressure over water and ice.

SVP over water SVP over ice
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g = —0.29912729 X 10* ko = —0.58653696 X 10*
g1 = —0.60170128 X 10 k, = 0.2224103300 X 102
2> = 0.1887643854 X 10?2 k, = 0.13749042 X 107!
g = —0.28354721 X 107! ky = —0.34031775 X 10~
2 =0, (1)78223812)01 ;< 10-) , 11:4 = 0.26967687 X 107
= —0.84150417 X 10~ =0.6 X 1
gZ = 0.44412543 X 1012 s 01865 X0
g, = 0.2858487 X 10!
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TaBLE 2. Coefficients of Hyland and Wexler’s (1983) expressions
for saturation vapor pressure over water and ice.

SVP over water SVP over ice

h_, = —0.58002206 X 10*
ho = 0.13914993 X 10!

h, = —0.48640239 X 10"
hy = 0.41764768 X 10~*
hy = —0.14452093 X 1077
hy = 0.65459673 X 10°

mo = —0.56745359 X 104
m; = 0.63925247 X 10!

my = —0.96778430 X 107}
ms = 0.62215701 X 10°¢
m, = 0.20747825 X 1078
ms = —0.94840240 x 10712
me = 0.41635019 X 10!

Wexler, and T, = 273.16 for Goff-Gratch. Double
precision code was run on a 32-bit workstation. The
fits are done with the weighted least-squares method
(Morris 1990). Two sets of weights arise naturally.
Constant weights provide a fit that minimizes absolute
deviation with respect to the reference values; we call
this version the absolute, or least-squares, norm. If the
relative error is of importance, weights inversely pro-
portional to the original data values are used; this is
the relative-error norm. Polynomial fits were proposed
before by Lowe (1974), who used the minmax norm
and fitted the Goff and Gratch (1946 ) and Goff (1965)
SVP expressions. The minmax (Chebyshev) norm is
similar to the one we label here as the least-square
norm. The minmax fit finds the approximation that
minimizes the maximum absolute error. The absolute
error is defined as

abs = leﬁ( — Cexact ls (32)
and the relative error is given by
€6t — €exac
rel = 100 16— Ceract | (%). (3.3)
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FIG. 1. Relative error for the sixth-order polynomial fit to the
Goff-Gratch saturation vapor pressure over water for the temperature
range —50°-50°C. Solid line is the fit performed with the relative
norm. Dotted line presents Lowe’s (1974 ) minmax norm results.
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FIG. 2. Absolute (solid curves) and relative (dotted curves) errors for the sixth-order polynomial fit to
the Wexler saturation vapor pressure and temperature derivative of saturation vapor pressure over water
for the temperature range —50°-50°C. Results derived from applying both the absolute [(a) and (c)] and
relative [(b) and (d)] norms are shown. Panels (a) and (b) are SVP, and (c) and (d) present temperature
derivative of saturation vapor pressure.
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FIG. 3. Same as in Fig. 2 but for the eighth-order polynomial fit to the Wexler formulas.
The temperature range is —85°-70°C.
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In all of the figures that follow, the errors have positive
values; the absolute value of errors is plotted. Figure 1
shows sixth-order polynomial fits to the Goff-Gratch
formulas. The solid line shows results derived by us
using the relative-error norm, and the dotted line is
based on Lowe’s (1974) sixth-order polynomial fit. It
can be seen that our expressions are consistently better,
with the exception of a small region of high tempera-
tures. This, however, is the region where the error is
already small. Thus, Lowe’s fits are not optimal for the
relative error. Use of the relative versus absolute norm
is governed by the particular application. If a value of
saturation vapor pressure is important in itself, the ab-
solute-norm results should be used. On the other hand,
if relative values are of importance (e.g., supersatura-
tion), the relative-error norm is more natural.

b. Results

We present results of sixth- and eighth-order poly-
nomial fits for SVP and its temperature derivative over
water and ice. Plots of absolute and relative errors for
SVP and the derivative of SVP over water are given in
Figs. 2 and 3. In these figures, panels (a) and (b) present
plots for SVP, and (c¢) and (d) for temperature deriv-
ative of SVP. All dashed lines show relative error in
percent. All solid lines give absolute error. Panels (a)
and (c¢) are for the absolute norm, while panels (b)
and (d) are in the relative norm. The only difference
between Figs. 2 and 3 is the order of polynomial (sixth
and eighth, respectively) and the temperature range.
Spikes on the plots correspond to the values where the
polynomial “crosses” the reference data; that is, the
predictions coincide. Notice that they are not distrib-
uted uniformly, with more spikes grouped in the low
end of the temperature range. This is because low rel-
ative error for small values of satyration vapor pressure
is difficult to achieve, and zeros of the polynomial have
to be forced to satisfy the data exactly. When applying
the relative norm (Figs. 2b, 3b, 2d, and 3d), the ab-
solute error (solid line) increases with increasing tem-
perature, but the relative error is fairly uniform if one
ignores the spikes. Values of absolute or relative error
equal to zero are removed because the data are plotted
on a logarithmic scale. In contrast, application of the
absolute norm (Figs. 2a, 3a, 2¢, and 3c) causes the
relative error (dotted line) to decrease sharply with in-
creasing temperatures. It is very small at the high end
of the temperature range. Absolute error remains fairly
constant if one ignores the spikes. Table 3 gives the
sixth-order Wexler fit in the temperature range —50°-
50°C for water and —50°-0°C for ice. Table 4 gives
the eighth-order Wexler fit in the temperature range
—85°-70°C for water and —90°-0°C for ice. Table 5
gives the eighth-order Hyland-Wexler in the temper-
ature range 0°-100°C for water and —75°-0°C for ice.
The range —85°-70°C was chosen for application in
a mesoscale model, where temperatures near —80°C

VOLUME 31

TaBLE 3. Coefficients of the sixth-order polynomial fits to SVP
and its temperature derivative over water for the temperature range
—50°~50°C. Same for ice but for the temperature range —50°-0°C.
Results for the relative and absolute norms are given. The original
data based on Wexler’s formulation.

Coeflicients Relative error norm Absolute norm
Water vapor Water vapor

a, 6.11176750 6.11237757

a, 0.443986062 0.443868373

as 0.143053301E-01 0.142972999E-01
a, 0.265027242E-03 0.265277571E-03
as 0.302246994E-05 0.303440695E-05
as 0.203886313E-07 0.202923793E-07
a; 0.638780966E-10 0.599234475E-10

Ice Ice

a 6.10952665 6.11129721

a; 0.501948366 0.502946169

as 0.186288989E-01 0.187819100E-01
a, 0.403488906E-03 0.413580047E-03
as 0.539797852E-05 0.572443200E-05
as 0.420713632E-07 0.471826455E-07
a; 0.147271071E-09 0.178255421E-09

Derivative; water Derivative; water

a; 0.444010270 0.443994807

a, 0.286175435E-01 0.285899617E-01
as 0.795246610E-03 0.794469942E-03
a, 0.120785253E-04 0.121487375E-04
as 0.101581498E-06 0.103456665E-06
as 0.384142063E-09 0.354662108E-09
a; 0.669517837E-13 ~0.690147330E-12

Derivative; ice Derivative; ice

a, 0.503176636 0.503214671

a 0.376859982E-01 0.377082927E-01
as 0.126121755E-02 0.126471345E-02
as 0.244143919E-04 0.246483786E-04
as 0.291045085E-06 0.298694887E-06
as 0.203326382E-08 0.215398512E-08
a, 0.647087051E-11 0.720715829E-11

may be encountered in the upper atmosphere (lower
temperatures would be truncated to —85°C, which al-
ready has a near-zero SVP), and temperatures ap-
proaching 70°C might be encountered in desert soils,
whose SVP must be evaluated.

4. Computer efficiency issues

Figure 4 presents the ratio of CRAY-YMP central
processor time for three different saturation-vapor-
pressure formulations. The upper figure compares
Wexler’'s SVP over water to the eighth-order polyno-
mial fit. The lower figure compares the Wexler and
Magnus expressions. The abscissa indicates the length
of the Fortran vector array containing temperatures
used in the calculation. The eighth-order polynomial
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TaBLE 4. Coefficients of the eighth-order polynomial fits to SVP
and its temperature derivative over water for the temperature range
—85°-70°C. Same for ice but for the temperature range —90°-0°C.
Results for the relative and absolute norms are given. The original
data based on Wexler’s formulation.

Coefficients Relative error norm Absolute norm
Water vapor Water vapor
a, 6.11583699 6.11239921
a, 0.444606896 0.443987641
as 0.143177157E-01 0.142986287E-01
a, 0.264224321E-03 0.264847430E-03
as 0.299291081E-05 0.302950461E-05
as 0.203154182E-07 0.206739458E-07
a; 0.702620698E-10 0.640689451E-10
as 0.379534310E-13 —0.952447341E-13
as —0.321582393E-15 —0.976195544E-15
Ice Ice
a, 6.09868993 6.11147274
a 0.499320233 0.503160820
as 0.184672631E-01 0.188439774E-01
a, 0.402737184E-03 0.420895665E-03
as 0.565392987E-05 0.615021634E-05
as 0.521693933E-07 0.602588177E-07
a; 0.307839583E-09 0.385852041E-09
as 0.105785160E-11 0.146898966E-11
ag 0.161444444E-14 0.252751365E-14
Derivative; water Derivative; water
a, 0.444035515 0.443956472
a, 0.285991650E-01 0.285976452E-01
as 0.793972425E-03 0.794747212E-03
a, 0.120923648E-04 0.121167162E-04
as 0.103673503E-06 0.103167413E-06
as 0.405898941E-09 0.385208005E-09
a; —0.579781423E-12 —0.604119582E-12
ag —0.115888324E-13 —0.792933209E-14
ag —0.318980675E-16 —0.599634321E-17
Derivative; ice Derivative; ice
a 0.503244909 0.503223089
a; 0.377293671E-01 0.377174432E-01
as 0.126877355E-02 0.126710138E-02
a, 0.250106092E-04 0.249065913E-04
as 0.316122722E-06 0.312668753E-06
as 0.262221927E-08 0.255653718E-08

a
ag
ay

0.139250559E-10
0.432132775E-13
0.598760960E-16

0.132073448E-10
0.390204672E-13
0.497275778E-16

fits are more efficient than the other formulations, run-
ning six times faster (in the asymptotic limit) than the
accurate Wexler formulation.

5. Comments and conclusions

During the course of this study we investigated sev-
eral approaches to numerical fits suitable for vector
computers. There are some issues worth elaboration.
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o Goff-Gratch: Replacement of the Goff-Gratch
expressions (and numerous derivative formulations
based on Goff-Gratch) in meteorological literature is
long overdue. We present here Wexler and Hyland—-
Wexler formulations, but further improvements could
be made by using the recently adopted ITS-90 scale.

e Uncertainties in the original data: There are un-
certainties in the original data that are related to un-
certainties in the measurements of temperature (tem-
perature scales IPTS-68, TTS, ITS-90), triple point of

TABLE 5. Coefficients of the eighth-order polynomial fits to SVP
and its temperature derivative over water for the temperature range
0°-100°C. Same for ice but for the temperature range —75°-0°C.
Results for the relative and absolute norms are given. The original
data based on Hyland-Wexler’s formulation.

Coefficients Relative error norm Absolute norm
Water vapor Water vapor

a 6.11213476 6.11220713

a, 0.444007856 0.443944344

as 0.143064234E-01 0.143195336E-01
a, 0.264461437E-03 0.263350515E-03
as 0.305903558E-05 0.310636053E-05
ds 0.196237241E-07 0.185218710E-07
a; 0.892344772E-10 0.103440324E-09
ag —0.373208410E-12 —0.468258100E-12
ag 0.209339997E-15 0.466533033E-15

Ice Ice

a, 6.11123516 6.11153246

a, 0.503109514 0.503261230

a, 0.188369801E-01 0.188595709E-01
a, 0.420547422E-03 0.422115970E-03
as 0.614396778E-05 0.620376691E-05
as 0.602780717E-07 0.616082536E-07
a; 0.387940929E-09 0.405172828E-09
ag 0.149436277E-11 0.161492905E-11
ag 0.262655803E-14 0.297886454E-14

Derivative; water Derivative; water

a, 0.444017302 0.444015587

az 0.286064092E-01 0.286078698E-01
as 0.794683137E-03 0.794390286E-03
a, 0.121211669E-04 0.121452998E-04
as 0.103354611E-06 0.102353090E-06
ag 0.404125005E-09 0.426886845E-09
a; —0.788037859E-12 —0.107509441E-11
ag —0.114596802E-13 —0.957713600E-14
ag 0.381294516E-16 0.331271700E-16

Derivative; ice Derivative; ice

a 0.503277922 0.503265481

a, 0.377289173E-01 0.377217899E-01
a, 0.126801703E-02 0.126686507E-02
ay 0.249468427E-04 0.248615257E-04
as 0.313703411E-06 0.310273831E-06
as 0.257180651E-08 0.249204696E-08
a; 0.133268878E-10 0.122536732E-10
ag 0.394116744E-13 0.316528423E-13
ag 0.498070196E-16 0.264795683E-16
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FIG. 4. Ratio of CRAY-YMP central processor time between three
different saturation-vapor-pressure formulations. The upper figure
compares Wexler’s saturation vapor pressure over water to the eighth-
order polynomial fit. The lower figure compares the Wexler expres-
sions to Magnus (1844 ) expressions. The Magnus formula is used
because it is one of the simplest expressions still retaining the ex-
ponential form. The abscissa indicates the number of elements of
the Fortran vector (temperature) used in calculation.

water, and other experimental errors. This is described
in more detail by Gibbins (1990). In this paper, we
are as interested in computational technique as in the
accuracy of vapor-pressure values, and have empha-
sized computational technique. For this reason we de-
veloped the Fortran code SVP, which can be used to
generate fits of arbitrary order in specific temperature
ranges and in user-defined SVP formulations. We also
provide codes for Wexler, Hyland—Wexler, and Goff-
Gratch formulations, but alternative formulations such
as that of Haar et al. (1984) or SVP on the ITS-90
scale can be easily added. The code is available on re-
quest. i

There is, however, reason to fit the data with accu-
racy exceeding that of an original measurement. Fits
are often performed with functions of differenit ana-
lytical properties in comparison with the reference
equation—fitting a polynomial to an exponential
function is one example. Allowing for large errors in
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accuracy of a fit may result in very large errors of de-
rived quantities such as; for example, the derivative.

e Rational approximations: Langlois (1967) pre-
sented fits to SVP in the form of a ratio of two poly-
nomials P/Q. Such fits often exhibit excellent prop-
erties (Bender and Orszag 1978). Also, once one of
the polynomials is calculated, it is “‘easier” to calculate
the second one (because powers of independent vari-
ables can be precalculated). We performed such fits
using the DIFCOR code (Kaufman et al. 1981). The
results were excellent for the ratio of polynomials of
sixth order. The more efficient eighth-order polyno-
mial, however, provides sufficient accuracy.

e Economization of evaluation of polynomials:
Knuth (1981) discusses algorithms that allow evalua-
tion of the nth-order polynomials with fewer than »
multiplications. Our test indicates that these algorithms
lead to longer execution time on a CRAY because of
memory reference and equivalence between addition
and multiplication operations in chained calculations.

e Other approximations: Gibbins (1990) reviews
more than 60 expressions for the approximation to
SVP. Some of them are analytically more complex and
numerically slower than the Goff-Gratch or Wexler
expressions. We feel that unless applications clearly
demand otherwise, the Wexler formulas should be
used. Polynomial fits or table lookups could be con-
sidered for numerically intensive calculations.
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