`metromc` === Markov chain Monte Carlo (MCMC) sampling using the _Independence Metropolis-Hastings_ algorithm with uniform transition kernel. [![Crates.io](https://img.shields.io/crates/v/metromc?style=flat-square&logo=rust)](https://crates.io/crates/metromc) [![docs.rs](https://img.shields.io/badge/docs.rs-metromc-blue?style=flat-square&logo=docs.rs)](https://docs.rs/metromc) [![Build Status](https://img.shields.io/github/actions/workflow/status/obsidiandynamics/metromc/master.yml?branch=master&style=flat-square&logo=github)](https://github.com/obsidiandynamics/metromc/actions/workflows/master.yml) Uses the [tinyrand](https://github.com/obsidiandynamics/tinyrand) RNG to sample at a rate of ~50M samples/sec. Supports the following distributions: * [Gaussian/Normal](https://en.wikipedia.org/wiki/Normal_distribution) * [Gamma](https://en.wikipedia.org/wiki/Gamma_distribution) * [Pareto](https://en.wikipedia.org/wiki/Pareto_distribution) * [Beta](https://en.wikipedia.org/wiki/Beta_distribution) It is easy to add more univariate distributions by supplying an implementation of a PDF or wrapping one from the excellent [statrs](https://crates.io/crates/statrs) crate. # Example Draw samples from the Gaussian distribution using MCMC. ```rust use std::ops::RangeInclusive; use tinyrand::Wyrand; use metromc::gaussian::Gaussian; use metromc::sampler::{Config, Sampler}; // sample from Gaussian with µ=0.0 and σ=1.0, in the interval [-5.0, 5.0] let sampler = Sampler::new(Config { rand: Wyrand::default(), dist: Gaussian::new(0.0, 1.0), range: -5.0..=5.0, }); // take 1,000 samples after dropping the first 10 for sample in sampler.skip(10).take(1_000) { println!("{sample:.6}"); } ```