namespace mfem {
/*! \mainpage Code Documentation
*
*
Main mesh classes
*
* - Mesh
* - NCMesh
* - Element
* - ElementTransformation
*
* Main finite element classes
*
* - FiniteElement
* - FiniteElementCollection
* - FiniteElementSpace
* - GridFunction
* - BilinearFormIntegrator and LinearFormIntegrator
* - LinearForm, BilinearForm and MixedBilinearForm
*
* Main linear algebra classes and sources
*
* - Operator and BilinearForm
* - Vector and LinearForm
* - DenseMatrix and SparseMatrix
* - Sparse \link sparsesmoothers.hpp smoothers\endlink and linear
* \link solvers.hpp solvers\endlink
*
* Main parallel classes
* - ParMesh
* - ParNCMesh
* - ParFiniteElementSpace
* - ParGridFunction
* - ParBilinearForm and ParLinearForm
* - HypreParMatrix and HypreParVector
* - HypreSolver and other \link hypre.hpp hypre classes\endlink
*
* Main GPU classes
* - Device
* - Memory
* - MemoryManager
* - mfem::forall functions in forall.hpp
*
* Example codes
* - Example 0: simplest example, nodal H1 FEM for the Laplace problem
* - Example 0p: simplest parallel example, nodal H1 FEM for the Laplace problem
* - Example 1: nodal H1 FEM for the Laplace problem (same discretization as ex0 but with more sophisticated options)
* - Example 1p: parallel nodal H1 FEM for the Laplace problem (same discretization as ex0p but with more sophisticated options)
* - Example 2: vector FEM for linear elasticity
* - Example 2p: parallel vector FEM for linear elasticity
* - Example 3: Nedelec H(curl) FEM for the definite Maxwell problem
* - Example 3p: parallel Nedelec H(curl) FEM for the definite Maxwell problem
* - Example 4: Raviart-Thomas H(div) FEM for the grad-div problem
* - Example 4p: parallel Raviart-Thomas H(div) FEM for the grad-div problem
* - Example 5: mixed pressure-velocity FEM for the Darcy problem
* - Example 5p: parallel mixed pressure-velocity FEM for the Darcy problem
* - Example 6: non-conforming adaptive mesh refinement for the Laplace problem
* - Example 6p: parallel non-conforming adaptive mesh refinement for the Laplace problem
* - Example 7: Laplace problem on a surface (the unit sphere)
* - Example 7p: parallel Laplace problem on a surface (the unit sphere)
* - Example 8: Discontinuous Petrov-Galerkin (DPG) for the Laplace problem
* - Example 8p: parallel Discontinuous Petrov-Galerkin (DPG) for the Laplace problem
* - Example 9: Discontinuous Galerkin (DG) time-dependent advection
* - Example 9p: parallel Discontinuous Galerkin (DG) time-dependent advection
* - Example 10: time-dependent implicit nonlinear elasticity
* - Example 10p: parallel time-dependent implicit nonlinear elasticity
* - Example 11p: parallel Laplace eigensolver
* - Example 12p: parallel linear elasticity eigensolver
* - Example 13p: parallel Maxwell eigensolver
* - Example 14: Discontinuous Galerkin (DG) for the Laplace problem
* - Example 14p: parallel Discontinuous Galerkin (DG) for the Laplace problem
* - Example 15: dynamic AMR for Laplace with prescribed time-dependent source
* - Example 15p: parallel dynamic AMR for Laplace with prescribed time-dependent source
* - Example 16: time-dependent nonlinear heat equation
* - Example 16p: parallel time-dependent nonlinear heat equation
* - Example 17: Discontinuous Galerkin (DG) for linear elasticity
* - Example 17p: parallel Discontinuous Galerkin (DG) for linear elasticity
* - Example 18: Discontinuous Galerkin (DG) for the Euler equations
* - Example 18p: parallel Discontinuous Galerkin (DG) for the Euler equations
* - Example 19: incompressible nonlinear elasticity
* - Example 19p: parallel incompressible nonlinear elasticity
* - Example 20: symplectic ODE integration
* - Example 20p: parallel symplectic ODE integration
* - Example 21: adaptive mesh refinement for linear elasticity
* - Example 21p: parallel adaptive mesh refinement for linear elasticity
* - Example 22: complex-valued linear systems for damped harmonic oscillators
* - Example 22p: parallel complex-valued linear systems for damped harmonic oscillators
* - Example 23: second order in time wave equation
* - Example 24: mixed finite element spaces and interpolators
* - Example 24p: parallel mixed finite element spaces and interpolators
* - Example 25: simulation of electromagnetic wave propagation using a Perfectly Matched Layer (PML)
* - Example 25p: parallel simulation of electromagnetic wave propagation using a Perfectly Matched Layer (PML)
* - Example 26: multigrid preconditioner for the Laplace problem using nodal H1 FEM
* - Example 26p: parallel multigrid preconditioner for the Laplace problem using nodal H1 FEM
* - Example 27: boundary conditions for the Laplace problem
* - Example 27p: parallel boundary conditions for the Laplace problem
* - Example 28: sliding contact in elasticity
* - Example 28p: parallel sliding contact in elasticity
* - Example 29: Laplace solve on a 3D-embedded surface
* - Example 29p: parallel Laplace solve on a 3D-embedded surface
* - Example 30: mesh preprocessing to resolve problem data
* - Example 30p: parallel mesh preprocessing to resolve problem data
* - Example 31: Nedelec H(curl) FEM for the definite anisotropic Maxwell problem
* - Example 31p: parallel Nedelec H(curl) FEM for the definite anisotropic Maxwell problem
* - Example 32p: parallel anisotropic Maxwell eigensolver
* - Example 33: nodal H1 FEM for the fractional Laplacian problem
* - Example 33p: parallel nodal H1 FEM for the fractional Laplacian problem
* - Example 34: multi-domain magnetostatics
* - Example 34p: parallel multi-domain magnetostatics
* - Example 35p: parallel multi-domain damped harmonic oscillators
* - Example 36: Proximal Galerkin FEM for the obstacle problem
* - Example 36p: parallel Proximal Galerkin FEM for the obstacle problem
* - Example 37: Topology optimization
* - Example 37p: parallel topology optimization
*
* AmgX Examples
* - Variants of Examples
* 1 and
* 1p,
* demonstrating the use of MFEM's \link amgxsolver.hpp AmgX integration\endlink.
*
* Caliper Examples
* - Variants of Example
* 1 and
* 1p,
* demonstrating the use of MFEM's \link annotation.hpp Ginkgo integration\endlink.
*
* Ginkgo Examples
* - Variants of Example
* 1,
* demonstrating the use of MFEM's \link ginkgo.hpp Ginkgo integration\endlink.
*
* HiOp Examples
* - Variants of Examples
* 9 and
* 9p,
* demonstrating the use of MFEM's \link hiop.hpp HiOp integration\endlink.
*
* PETSc Examples
* - Variants of Examples
* 1p,
* 2p,
* 3p,
* 4p,
* 5p,
* 6p,
* 9p,
* and
* 10p,
* demonstrating the use of MFEM's \link petsc.hpp PETSc integration\endlink.
*
* PUMI Examples
* - Variants of Examples
* 1,
* 1p,
* 2,
* and
* 6p,
* demonstrating the use of MFEM's \link pumi.hpp PUMI integration\endlink.
*
* SUNDIALS Examples
* - Variants of Examples
* 9,
* 9p,
* 10,
* 10p,
* 16,
* and
* 16p,
* demonstrating the use of MFEM's \link sundials.hpp SUNDIALS integration\endlink.
* - CVODES adjoint miniapps:
* serial ODE system,
* parallel advection-diffusion.
*
* SuperLU Examples
* - Variants of Example
* 1p,
* demonstrating the use of MFEM's \link superlu.hpp SuperLU integration\endlink.
*
* Miniapps
* - Volta: simple electrostatics simulation code
* - Tesla: simple magnetostatics simulation code
* - Maxwell: simple transient full-wave electromagnetics simulation code
* - Joule: transient magnetics and Joule heating miniapp
* - Navier: solve the transient incompressible Navier-Stokes equations
* - Mobius Strip: generate various Mobius strip-like meshes
* - Klein Bottle: generate three types of Klein bottle surfaces
* - Toroid: generate simple toroidal meshes
* - Twist: generate simple periodic meshes
* - Minimal Surface: compute minimal surfaces, serial and parallel versions
* - Polar NC: generate polar non-conforming meshes
* - Shaper: resolve material interfaces by mesh refinement
* - Extruder: extrude a low-dimensional mesh into a higher dimension
* - Mesh Explorer: visualize and manipulate meshes
* - Mesh Optimizer: optimize high-order meshes, serial and parallel versions
* - Mesh Quality: visualize and check mesh quality
* - Trimmer: trim elements from existing meshes
* - Display Basis: visualize finite element basis functions
* - Get Values: extract field values via DataCollection classes
* - Load DC: visualize fields saved via DataCollection classes
* - Convert DC: convert between different DataCollection formats
* - LOR Transfer: map functions between high-order and low-order refined spaces
* - Find Points: evaluate grid function in physical space, serial and parallel versions
* - Field Diff: compare grid functions on different meshes
* - Field Interp: transfer a grid functions between meshes
* - Distance: finite element distance function solver
* - Shifted Diffusion: shifted boundary diffusion solver
* - Extrapolation: PDE-based extrapolation of finite element functions
* - Block Solvers: comparison of saddle point system solvers
* - Optimization gradients: Gradients of PDE-constrained function
* - Parallel AD: Parallel p-Laplacian example
* - Serial AD: Serial p-Laplacian example
* - HPC Example 1: high-performance nodal H1 FEM for the Laplace problem
* - HPC Example 1p: high-performance parallel nodal H1 FEM for the Laplace problem
* - SPDE Solvers: SPDE solver random field generation
* - DPG Diffusion example: DPG formulation for the diffusion problem
* - DPG Maxwell example: DPG formulation for the indefinite Maxwell problem
*
* See also the examples documentation online.
*/
}