namespace mfem { /*! \mainpage Code Documentation * *

Main mesh classes

* * - Mesh * - NCMesh * - Element * - ElementTransformation * *

Main finite element classes

* * - FiniteElement * - FiniteElementCollection * - FiniteElementSpace * - GridFunction * - BilinearFormIntegrator and LinearFormIntegrator * - LinearForm, BilinearForm and MixedBilinearForm * *

Main linear algebra classes and sources

* * - Operator and BilinearForm * - Vector and LinearForm * - DenseMatrix and SparseMatrix * - Sparse \link sparsesmoothers.hpp smoothers\endlink and linear * \link solvers.hpp solvers\endlink * *

Main parallel classes

* - ParMesh * - ParNCMesh * - ParFiniteElementSpace * - ParGridFunction * - ParBilinearForm and ParLinearForm * - HypreParMatrix and HypreParVector * - HypreSolver and other \link hypre.hpp hypre classes\endlink * *

Main GPU classes

* - Device * - Memory * - MemoryManager * - mfem::forall functions in forall.hpp * *

Example codes

* - Example 0: simplest example, nodal H1 FEM for the Laplace problem * - Example 0p: simplest parallel example, nodal H1 FEM for the Laplace problem * - Example 1: nodal H1 FEM for the Laplace problem (same discretization as ex0 but with more sophisticated options) * - Example 1p: parallel nodal H1 FEM for the Laplace problem (same discretization as ex0p but with more sophisticated options) * - Example 2: vector FEM for linear elasticity * - Example 2p: parallel vector FEM for linear elasticity * - Example 3: Nedelec H(curl) FEM for the definite Maxwell problem * - Example 3p: parallel Nedelec H(curl) FEM for the definite Maxwell problem * - Example 4: Raviart-Thomas H(div) FEM for the grad-div problem * - Example 4p: parallel Raviart-Thomas H(div) FEM for the grad-div problem * - Example 5: mixed pressure-velocity FEM for the Darcy problem * - Example 5p: parallel mixed pressure-velocity FEM for the Darcy problem * - Example 6: non-conforming adaptive mesh refinement for the Laplace problem * - Example 6p: parallel non-conforming adaptive mesh refinement for the Laplace problem * - Example 7: Laplace problem on a surface (the unit sphere) * - Example 7p: parallel Laplace problem on a surface (the unit sphere) * - Example 8: Discontinuous Petrov-Galerkin (DPG) for the Laplace problem * - Example 8p: parallel Discontinuous Petrov-Galerkin (DPG) for the Laplace problem * - Example 9: Discontinuous Galerkin (DG) time-dependent advection * - Example 9p: parallel Discontinuous Galerkin (DG) time-dependent advection * - Example 10: time-dependent implicit nonlinear elasticity * - Example 10p: parallel time-dependent implicit nonlinear elasticity * - Example 11p: parallel Laplace eigensolver * - Example 12p: parallel linear elasticity eigensolver * - Example 13p: parallel Maxwell eigensolver * - Example 14: Discontinuous Galerkin (DG) for the Laplace problem * - Example 14p: parallel Discontinuous Galerkin (DG) for the Laplace problem * - Example 15: dynamic AMR for Laplace with prescribed time-dependent source * - Example 15p: parallel dynamic AMR for Laplace with prescribed time-dependent source * - Example 16: time-dependent nonlinear heat equation * - Example 16p: parallel time-dependent nonlinear heat equation * - Example 17: Discontinuous Galerkin (DG) for linear elasticity * - Example 17p: parallel Discontinuous Galerkin (DG) for linear elasticity * - Example 18: Discontinuous Galerkin (DG) for the Euler equations * - Example 18p: parallel Discontinuous Galerkin (DG) for the Euler equations * - Example 19: incompressible nonlinear elasticity * - Example 19p: parallel incompressible nonlinear elasticity * - Example 20: symplectic ODE integration * - Example 20p: parallel symplectic ODE integration * - Example 21: adaptive mesh refinement for linear elasticity * - Example 21p: parallel adaptive mesh refinement for linear elasticity * - Example 22: complex-valued linear systems for damped harmonic oscillators * - Example 22p: parallel complex-valued linear systems for damped harmonic oscillators * - Example 23: second order in time wave equation * - Example 24: mixed finite element spaces and interpolators * - Example 24p: parallel mixed finite element spaces and interpolators * - Example 25: simulation of electromagnetic wave propagation using a Perfectly Matched Layer (PML) * - Example 25p: parallel simulation of electromagnetic wave propagation using a Perfectly Matched Layer (PML) * - Example 26: multigrid preconditioner for the Laplace problem using nodal H1 FEM * - Example 26p: parallel multigrid preconditioner for the Laplace problem using nodal H1 FEM * - Example 27: boundary conditions for the Laplace problem * - Example 27p: parallel boundary conditions for the Laplace problem * - Example 28: sliding contact in elasticity * - Example 28p: parallel sliding contact in elasticity * - Example 29: Laplace solve on a 3D-embedded surface * - Example 29p: parallel Laplace solve on a 3D-embedded surface * - Example 30: mesh preprocessing to resolve problem data * - Example 30p: parallel mesh preprocessing to resolve problem data * - Example 31: Nedelec H(curl) FEM for the definite anisotropic Maxwell problem * - Example 31p: parallel Nedelec H(curl) FEM for the definite anisotropic Maxwell problem * - Example 32p: parallel anisotropic Maxwell eigensolver * - Example 33: nodal H1 FEM for the fractional Laplacian problem * - Example 33p: parallel nodal H1 FEM for the fractional Laplacian problem * - Example 34: multi-domain magnetostatics * - Example 34p: parallel multi-domain magnetostatics * - Example 35p: parallel multi-domain damped harmonic oscillators * - Example 36: Proximal Galerkin FEM for the obstacle problem * - Example 36p: parallel Proximal Galerkin FEM for the obstacle problem * - Example 37: Topology optimization * - Example 37p: parallel topology optimization * *

AmgX Examples

* - Variants of Examples * 1 and * 1p, * demonstrating the use of MFEM's \link amgxsolver.hpp AmgX integration\endlink. * *

Caliper Examples

* - Variants of Example * 1 and * 1p, * demonstrating the use of MFEM's \link annotation.hpp Ginkgo integration\endlink. * *

Ginkgo Examples

* - Variants of Example * 1, * demonstrating the use of MFEM's \link ginkgo.hpp Ginkgo integration\endlink. * *

HiOp Examples

* - Variants of Examples * 9 and * 9p, * demonstrating the use of MFEM's \link hiop.hpp HiOp integration\endlink. * *

PETSc Examples

* - Variants of Examples * 1p, * 2p, * 3p, * 4p, * 5p, * 6p, * 9p, * and * 10p, * demonstrating the use of MFEM's \link petsc.hpp PETSc integration\endlink. * *

PUMI Examples

* - Variants of Examples * 1, * 1p, * 2, * and * 6p, * demonstrating the use of MFEM's \link pumi.hpp PUMI integration\endlink. * *

SUNDIALS Examples

* - Variants of Examples * 9, * 9p, * 10, * 10p, * 16, * and * 16p, * demonstrating the use of MFEM's \link sundials.hpp SUNDIALS integration\endlink. * - CVODES adjoint miniapps: * serial ODE system, * parallel advection-diffusion. * *

SuperLU Examples

* - Variants of Example * 1p, * demonstrating the use of MFEM's \link superlu.hpp SuperLU integration\endlink. * *

Miniapps

* - Volta: simple electrostatics simulation code * - Tesla: simple magnetostatics simulation code * - Maxwell: simple transient full-wave electromagnetics simulation code * - Joule: transient magnetics and Joule heating miniapp * - Navier: solve the transient incompressible Navier-Stokes equations * - Mobius Strip: generate various Mobius strip-like meshes * - Klein Bottle: generate three types of Klein bottle surfaces * - Toroid: generate simple toroidal meshes * - Twist: generate simple periodic meshes * - Minimal Surface: compute minimal surfaces, serial and parallel versions * - Polar NC: generate polar non-conforming meshes * - Shaper: resolve material interfaces by mesh refinement * - Extruder: extrude a low-dimensional mesh into a higher dimension * - Mesh Explorer: visualize and manipulate meshes * - Mesh Optimizer: optimize high-order meshes, serial and parallel versions * - Mesh Quality: visualize and check mesh quality * - Trimmer: trim elements from existing meshes * - Display Basis: visualize finite element basis functions * - Get Values: extract field values via DataCollection classes * - Load DC: visualize fields saved via DataCollection classes * - Convert DC: convert between different DataCollection formats * - LOR Transfer: map functions between high-order and low-order refined spaces * - Find Points: evaluate grid function in physical space, serial and parallel versions * - Field Diff: compare grid functions on different meshes * - Field Interp: transfer a grid functions between meshes * - Distance: finite element distance function solver * - Shifted Diffusion: shifted boundary diffusion solver * - Extrapolation: PDE-based extrapolation of finite element functions * - Block Solvers: comparison of saddle point system solvers * - Optimization gradients: Gradients of PDE-constrained function * - Parallel AD: Parallel p-Laplacian example * - Serial AD: Serial p-Laplacian example * - HPC Example 1: high-performance nodal H1 FEM for the Laplace problem * - HPC Example 1p: high-performance parallel nodal H1 FEM for the Laplace problem * - SPDE Solvers: SPDE solver random field generation * - DPG Diffusion example: DPG formulation for the diffusion problem * - DPG Maxwell example: DPG formulation for the indefinite Maxwell problem * * See also the examples documentation online. */ }