// MFEM Example 10 // // Compile with: make ex10 // // Sample runs: // ex10 -m ../data/beam-quad.mesh -s 3 -r 2 -o 2 -dt 3 // ex10 -m ../data/beam-tri.mesh -s 3 -r 2 -o 2 -dt 3 // ex10 -m ../data/beam-hex.mesh -s 2 -r 1 -o 2 -dt 3 // ex10 -m ../data/beam-tet.mesh -s 2 -r 1 -o 2 -dt 3 // ex10 -m ../data/beam-wedge.mesh -s 2 -r 1 -o 2 -dt 3 // ex10 -m ../data/beam-quad.mesh -s 14 -r 2 -o 2 -dt 0.03 -vs 20 // ex10 -m ../data/beam-hex.mesh -s 14 -r 1 -o 2 -dt 0.05 -vs 20 // ex10 -m ../data/beam-quad-amr.mesh -s 3 -r 2 -o 2 -dt 3 // // Description: This examples solves a time dependent nonlinear elasticity // problem of the form dv/dt = H(x) + S v, dx/dt = v, where H is a // hyperelastic model and S is a viscosity operator of Laplacian // type. The geometry of the domain is assumed to be as follows: // // +---------------------+ // boundary --->| | // attribute 1 | | // (fixed) +---------------------+ // // The example demonstrates the use of nonlinear operators (the // class HyperelasticOperator defining H(x)), as well as their // implicit time integration using a Newton method for solving an // associated reduced backward-Euler type nonlinear equation // (class ReducedSystemOperator). Each Newton step requires the // inversion of a Jacobian matrix, which is done through a // (preconditioned) inner solver. Note that implementing the // method HyperelasticOperator::ImplicitSolve is the only // requirement for high-order implicit (SDIRK) time integration. // // We recommend viewing examples 2 and 9 before viewing this // example. #include "mfem.hpp" #include #include #include using namespace std; using namespace mfem; class ReducedSystemOperator; /** After spatial discretization, the hyperelastic model can be written as a * system of ODEs: * dv/dt = -M^{-1}*(H(x) + S*v) * dx/dt = v, * where x is the vector representing the deformation, v is the velocity field, * M is the mass matrix, S is the viscosity matrix, and H(x) is the nonlinear * hyperelastic operator. * * Class HyperelasticOperator represents the right-hand side of the above * system of ODEs. */ class HyperelasticOperator : public TimeDependentOperator { protected: FiniteElementSpace &fespace; BilinearForm M, S; NonlinearForm H; double viscosity; HyperelasticModel *model; CGSolver M_solver; // Krylov solver for inverting the mass matrix M DSmoother M_prec; // Preconditioner for the mass matrix M /** Nonlinear operator defining the reduced backward Euler equation for the velocity. Used in the implementation of method ImplicitSolve. */ ReducedSystemOperator *reduced_oper; /// Newton solver for the reduced backward Euler equation NewtonSolver newton_solver; /// Solver for the Jacobian solve in the Newton method Solver *J_solver; /// Preconditioner for the Jacobian solve in the Newton method Solver *J_prec; mutable Vector z; // auxiliary vector public: HyperelasticOperator(FiniteElementSpace &f, Array &ess_bdr, double visc, double mu, double K); /// Compute the right-hand side of the ODE system. virtual void Mult(const Vector &vx, Vector &dvx_dt) const; /** Solve the Backward-Euler equation: k = f(x + dt*k, t), for the unknown k. This is the only requirement for high-order SDIRK implicit integration.*/ virtual void ImplicitSolve(const double dt, const Vector &x, Vector &k); double ElasticEnergy(const Vector &x) const; double KineticEnergy(const Vector &v) const; void GetElasticEnergyDensity(const GridFunction &x, GridFunction &w) const; virtual ~HyperelasticOperator(); }; /** Nonlinear operator of the form: k --> (M + dt*S)*k + H(x + dt*v + dt^2*k) + S*v, where M and S are given BilinearForms, H is a given NonlinearForm, v and x are given vectors, and dt is a scalar. */ class ReducedSystemOperator : public Operator { private: BilinearForm *M, *S; NonlinearForm *H; mutable SparseMatrix *Jacobian; double dt; const Vector *v, *x; mutable Vector w, z; public: ReducedSystemOperator(BilinearForm *M_, BilinearForm *S_, NonlinearForm *H_); /// Set current dt, v, x values - needed to compute action and Jacobian. void SetParameters(double dt_, const Vector *v_, const Vector *x_); /// Compute y = H(x + dt (v + dt k)) + M k + S (v + dt k). virtual void Mult(const Vector &k, Vector &y) const; /// Compute J = M + dt S + dt^2 grad_H(x + dt (v + dt k)). virtual Operator &GetGradient(const Vector &k) const; virtual ~ReducedSystemOperator(); }; /** Function representing the elastic energy density for the given hyperelastic model+deformation. Used in HyperelasticOperator::GetElasticEnergyDensity. */ class ElasticEnergyCoefficient : public Coefficient { private: HyperelasticModel &model; const GridFunction &x; DenseMatrix J; public: ElasticEnergyCoefficient(HyperelasticModel &m, const GridFunction &x_) : model(m), x(x_) { } virtual double Eval(ElementTransformation &T, const IntegrationPoint &ip); virtual ~ElasticEnergyCoefficient() { } }; void InitialDeformation(const Vector &x, Vector &y); void InitialVelocity(const Vector &x, Vector &v); void visualize(ostream &os, Mesh *mesh, GridFunction *deformed_nodes, GridFunction *field, const char *field_name = NULL, bool init_vis = false); int main(int argc, char *argv[]) { // 1. Parse command-line options. const char *mesh_file = "../data/beam-quad.mesh"; int ref_levels = 2; int order = 2; int ode_solver_type = 3; double t_final = 300.0; double dt = 3.0; double visc = 1e-2; double mu = 0.25; double K = 5.0; bool visualization = true; int vis_steps = 1; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&ref_levels, "-r", "--refine", "Number of times to refine the mesh uniformly."); args.AddOption(&order, "-o", "--order", "Order (degree) of the finite elements."); args.AddOption(&ode_solver_type, "-s", "--ode-solver", "ODE solver: 1 - Backward Euler, 2 - SDIRK2, 3 - SDIRK3,\n\t" " 11 - Forward Euler, 12 - RK2,\n\t" " 13 - RK3 SSP, 14 - RK4." " 22 - Implicit Midpoint Method,\n\t" " 23 - SDIRK23 (A-stable), 24 - SDIRK34"); args.AddOption(&t_final, "-tf", "--t-final", "Final time; start time is 0."); args.AddOption(&dt, "-dt", "--time-step", "Time step."); args.AddOption(&visc, "-v", "--viscosity", "Viscosity coefficient."); args.AddOption(&mu, "-mu", "--shear-modulus", "Shear modulus in the Neo-Hookean hyperelastic model."); args.AddOption(&K, "-K", "--bulk-modulus", "Bulk modulus in the Neo-Hookean hyperelastic model."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(&vis_steps, "-vs", "--visualization-steps", "Visualize every n-th timestep."); args.Parse(); if (!args.Good()) { args.PrintUsage(cout); return 1; } args.PrintOptions(cout); // 2. Read the mesh from the given mesh file. We can handle triangular, // quadrilateral, tetrahedral and hexahedral meshes with the same code. Mesh *mesh = new Mesh(mesh_file, 1, 1); int dim = mesh->Dimension(); // 3. Define the ODE solver used for time integration. Several implicit // singly diagonal implicit Runge-Kutta (SDIRK) methods, as well as // explicit Runge-Kutta methods are available. ODESolver *ode_solver; switch (ode_solver_type) { // Implicit L-stable methods case 1: ode_solver = new BackwardEulerSolver; break; case 2: ode_solver = new SDIRK23Solver(2); break; case 3: ode_solver = new SDIRK33Solver; break; // Explicit methods case 11: ode_solver = new ForwardEulerSolver; break; case 12: ode_solver = new RK2Solver(0.5); break; // midpoint method case 13: ode_solver = new RK3SSPSolver; break; case 14: ode_solver = new RK4Solver; break; case 15: ode_solver = new GeneralizedAlphaSolver(0.5); break; // Implicit A-stable methods (not L-stable) case 22: ode_solver = new ImplicitMidpointSolver; break; case 23: ode_solver = new SDIRK23Solver; break; case 24: ode_solver = new SDIRK34Solver; break; default: cout << "Unknown ODE solver type: " << ode_solver_type << '\n'; delete mesh; return 3; } // 4. Refine the mesh to increase the resolution. In this example we do // 'ref_levels' of uniform refinement, where 'ref_levels' is a // command-line parameter. for (int lev = 0; lev < ref_levels; lev++) { mesh->UniformRefinement(); } // 5. Define the vector finite element spaces representing the mesh // deformation x, the velocity v, and the initial configuration, x_ref. // Define also the elastic energy density, w, which is in a discontinuous // higher-order space. Since x and v are integrated in time as a system, // we group them together in block vector vx, with offsets given by the // fe_offset array. H1_FECollection fe_coll(order, dim); FiniteElementSpace fespace(mesh, &fe_coll, dim); int fe_size = fespace.GetTrueVSize(); cout << "Number of velocity/deformation unknowns: " << fe_size << endl; Array fe_offset(3); fe_offset[0] = 0; fe_offset[1] = fe_size; fe_offset[2] = 2*fe_size; BlockVector vx(fe_offset); GridFunction v, x; v.MakeTRef(&fespace, vx.GetBlock(0), 0); x.MakeTRef(&fespace, vx.GetBlock(1), 0); GridFunction x_ref(&fespace); mesh->GetNodes(x_ref); L2_FECollection w_fec(order + 1, dim); FiniteElementSpace w_fespace(mesh, &w_fec); GridFunction w(&w_fespace); // 6. Set the initial conditions for v and x, and the boundary conditions on // a beam-like mesh (see description above). VectorFunctionCoefficient velo(dim, InitialVelocity); v.ProjectCoefficient(velo); v.SetTrueVector(); VectorFunctionCoefficient deform(dim, InitialDeformation); x.ProjectCoefficient(deform); x.SetTrueVector(); Array ess_bdr(fespace.GetMesh()->bdr_attributes.Max()); ess_bdr = 0; ess_bdr[0] = 1; // boundary attribute 1 (index 0) is fixed // 7. Initialize the hyperelastic operator, the GLVis visualization and print // the initial energies. HyperelasticOperator oper(fespace, ess_bdr, visc, mu, K); socketstream vis_v, vis_w; if (visualization) { char vishost[] = "localhost"; int visport = 19916; vis_v.open(vishost, visport); vis_v.precision(8); v.SetFromTrueVector(); x.SetFromTrueVector(); visualize(vis_v, mesh, &x, &v, "Velocity", true); vis_w.open(vishost, visport); if (vis_w) { oper.GetElasticEnergyDensity(x, w); vis_w.precision(8); visualize(vis_w, mesh, &x, &w, "Elastic energy density", true); } cout << "GLVis visualization paused." << " Press space (in the GLVis window) to resume it.\n"; } double ee0 = oper.ElasticEnergy(x.GetTrueVector()); double ke0 = oper.KineticEnergy(v.GetTrueVector()); cout << "initial elastic energy (EE) = " << ee0 << endl; cout << "initial kinetic energy (KE) = " << ke0 << endl; cout << "initial total energy (TE) = " << (ee0 + ke0) << endl; double t = 0.0; oper.SetTime(t); ode_solver->Init(oper); // 8. Perform time-integration (looping over the time iterations, ti, with a // time-step dt). bool last_step = false; for (int ti = 1; !last_step; ti++) { double dt_real = min(dt, t_final - t); ode_solver->Step(vx, t, dt_real); last_step = (t >= t_final - 1e-8*dt); if (last_step || (ti % vis_steps) == 0) { double ee = oper.ElasticEnergy(x.GetTrueVector()); double ke = oper.KineticEnergy(v.GetTrueVector()); cout << "step " << ti << ", t = " << t << ", EE = " << ee << ", KE = " << ke << ", ΔTE = " << (ee+ke)-(ee0+ke0) << endl; if (visualization) { v.SetFromTrueVector(); x.SetFromTrueVector(); visualize(vis_v, mesh, &x, &v); if (vis_w) { oper.GetElasticEnergyDensity(x, w); visualize(vis_w, mesh, &x, &w); } } } } // 9. Save the displaced mesh, the velocity and elastic energy. { v.SetFromTrueVector(); x.SetFromTrueVector(); GridFunction *nodes = &x; int owns_nodes = 0; mesh->SwapNodes(nodes, owns_nodes); ofstream mesh_ofs("deformed.mesh"); mesh_ofs.precision(8); mesh->Print(mesh_ofs); mesh->SwapNodes(nodes, owns_nodes); ofstream velo_ofs("velocity.sol"); velo_ofs.precision(8); v.Save(velo_ofs); ofstream ee_ofs("elastic_energy.sol"); ee_ofs.precision(8); oper.GetElasticEnergyDensity(x, w); w.Save(ee_ofs); } // 10. Free the used memory. delete ode_solver; delete mesh; return 0; } void visualize(ostream &os, Mesh *mesh, GridFunction *deformed_nodes, GridFunction *field, const char *field_name, bool init_vis) { if (!os) { return; } GridFunction *nodes = deformed_nodes; int owns_nodes = 0; mesh->SwapNodes(nodes, owns_nodes); os << "solution\n" << *mesh << *field; mesh->SwapNodes(nodes, owns_nodes); if (init_vis) { os << "window_size 800 800\n"; os << "window_title '" << field_name << "'\n"; if (mesh->SpaceDimension() == 2) { os << "view 0 0\n"; // view from top os << "keys jl\n"; // turn off perspective and light } os << "keys cm\n"; // show colorbar and mesh // update value-range; keep mesh-extents fixed os << "autoscale value\n"; os << "pause\n"; } os << flush; } ReducedSystemOperator::ReducedSystemOperator( BilinearForm *M_, BilinearForm *S_, NonlinearForm *H_) : Operator(M_->Height()), M(M_), S(S_), H(H_), Jacobian(NULL), dt(0.0), v(NULL), x(NULL), w(height), z(height) { } void ReducedSystemOperator::SetParameters(double dt_, const Vector *v_, const Vector *x_) { dt = dt_; v = v_; x = x_; } void ReducedSystemOperator::Mult(const Vector &k, Vector &y) const { // compute: y = H(x + dt*(v + dt*k)) + M*k + S*(v + dt*k) add(*v, dt, k, w); add(*x, dt, w, z); H->Mult(z, y); M->AddMult(k, y); S->AddMult(w, y); } Operator &ReducedSystemOperator::GetGradient(const Vector &k) const { delete Jacobian; Jacobian = Add(1.0, M->SpMat(), dt, S->SpMat()); add(*v, dt, k, w); add(*x, dt, w, z); SparseMatrix *grad_H = dynamic_cast(&H->GetGradient(z)); Jacobian->Add(dt*dt, *grad_H); return *Jacobian; } ReducedSystemOperator::~ReducedSystemOperator() { delete Jacobian; } HyperelasticOperator::HyperelasticOperator(FiniteElementSpace &f, Array &ess_bdr, double visc, double mu, double K) : TimeDependentOperator(2*f.GetTrueVSize(), 0.0), fespace(f), M(&fespace), S(&fespace), H(&fespace), viscosity(visc), z(height/2) { const double rel_tol = 1e-8; const int skip_zero_entries = 0; const double ref_density = 1.0; // density in the reference configuration ConstantCoefficient rho0(ref_density); M.AddDomainIntegrator(new VectorMassIntegrator(rho0)); M.Assemble(skip_zero_entries); Array ess_tdof_list; fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list); SparseMatrix tmp; M.FormSystemMatrix(ess_tdof_list, tmp); M_solver.iterative_mode = false; M_solver.SetRelTol(rel_tol); M_solver.SetAbsTol(0.0); M_solver.SetMaxIter(30); M_solver.SetPrintLevel(0); M_solver.SetPreconditioner(M_prec); M_solver.SetOperator(M.SpMat()); model = new NeoHookeanModel(mu, K); H.AddDomainIntegrator(new HyperelasticNLFIntegrator(model)); H.SetEssentialTrueDofs(ess_tdof_list); ConstantCoefficient visc_coeff(viscosity); S.AddDomainIntegrator(new VectorDiffusionIntegrator(visc_coeff)); S.Assemble(skip_zero_entries); S.FormSystemMatrix(ess_tdof_list, tmp); reduced_oper = new ReducedSystemOperator(&M, &S, &H); #ifndef MFEM_USE_SUITESPARSE J_prec = new DSmoother(1); MINRESSolver *J_minres = new MINRESSolver; J_minres->SetRelTol(rel_tol); J_minres->SetAbsTol(0.0); J_minres->SetMaxIter(300); J_minres->SetPrintLevel(-1); J_minres->SetPreconditioner(*J_prec); J_solver = J_minres; #else J_solver = new UMFPackSolver; J_prec = NULL; #endif newton_solver.iterative_mode = false; newton_solver.SetSolver(*J_solver); newton_solver.SetOperator(*reduced_oper); newton_solver.SetPrintLevel(1); // print Newton iterations newton_solver.SetRelTol(rel_tol); newton_solver.SetAbsTol(0.0); newton_solver.SetMaxIter(10); } void HyperelasticOperator::Mult(const Vector &vx, Vector &dvx_dt) const { // Create views to the sub-vectors v, x of vx, and dv_dt, dx_dt of dvx_dt int sc = height/2; Vector v(vx.GetData() + 0, sc); Vector x(vx.GetData() + sc, sc); Vector dv_dt(dvx_dt.GetData() + 0, sc); Vector dx_dt(dvx_dt.GetData() + sc, sc); H.Mult(x, z); if (viscosity != 0.0) { S.AddMult(v, z); } z.Neg(); // z = -z M_solver.Mult(z, dv_dt); dx_dt = v; } void HyperelasticOperator::ImplicitSolve(const double dt, const Vector &vx, Vector &dvx_dt) { int sc = height/2; Vector v(vx.GetData() + 0, sc); Vector x(vx.GetData() + sc, sc); Vector dv_dt(dvx_dt.GetData() + 0, sc); Vector dx_dt(dvx_dt.GetData() + sc, sc); // By eliminating kx from the coupled system: // kv = -M^{-1}*[H(x + dt*kx) + S*(v + dt*kv)] // kx = v + dt*kv // we reduce it to a nonlinear equation for kv, represented by the // reduced_oper. This equation is solved with the newton_solver // object (using J_solver and J_prec internally). reduced_oper->SetParameters(dt, &v, &x); Vector zero; // empty vector is interpreted as zero r.h.s. by NewtonSolver newton_solver.Mult(zero, dv_dt); MFEM_VERIFY(newton_solver.GetConverged(), "Newton solver did not converge."); add(v, dt, dv_dt, dx_dt); } double HyperelasticOperator::ElasticEnergy(const Vector &x) const { return H.GetEnergy(x); } double HyperelasticOperator::KineticEnergy(const Vector &v) const { return 0.5*M.InnerProduct(v, v); } void HyperelasticOperator::GetElasticEnergyDensity( const GridFunction &x, GridFunction &w) const { ElasticEnergyCoefficient w_coeff(*model, x); w.ProjectCoefficient(w_coeff); } HyperelasticOperator::~HyperelasticOperator() { delete J_solver; delete J_prec; delete reduced_oper; delete model; } double ElasticEnergyCoefficient::Eval(ElementTransformation &T, const IntegrationPoint &ip) { model.SetTransformation(T); x.GetVectorGradient(T, J); // return model.EvalW(J); // in reference configuration return model.EvalW(J)/J.Det(); // in deformed configuration } void InitialDeformation(const Vector &x, Vector &y) { // set the initial configuration to be the same as the reference, stress // free, configuration y = x; } void InitialVelocity(const Vector &x, Vector &v) { const int dim = x.Size(); const double s = 0.1/64.; v = 0.0; v(dim-1) = s*x(0)*x(0)*(8.0-x(0)); v(0) = -s*x(0)*x(0); }