// MFEM Example 14 // // Compile with: make ex14 // // Sample runs: ex14 -m ../data/inline-quad.mesh -o 0 // ex14 -m ../data/star.mesh -r 4 -o 2 // ex14 -m ../data/star-mixed.mesh -r 4 -o 2 // ex14 -m ../data/star-mixed.mesh -r 2 -o 2 -k 0 -e 1 // ex14 -m ../data/escher.mesh -s 1 // ex14 -m ../data/fichera.mesh -s 1 -k 1 // ex14 -m ../data/fichera-mixed.mesh -s 1 -k 1 // ex14 -m ../data/square-disc-p2.vtk -r 3 -o 2 // ex14 -m ../data/square-disc-p3.mesh -r 2 -o 3 // ex14 -m ../data/square-disc-nurbs.mesh -o 1 // ex14 -m ../data/disc-nurbs.mesh -r 3 -o 2 -s 1 -k 0 // ex14 -m ../data/pipe-nurbs.mesh -o 1 // ex14 -m ../data/inline-segment.mesh -r 5 // ex14 -m ../data/amr-quad.mesh -r 3 // ex14 -m ../data/amr-hex.mesh // ex14 -m ../data/fichera-amr.mesh // // Description: This example code demonstrates the use of MFEM to define a // discontinuous Galerkin (DG) finite element discretization of // the Laplace problem -Delta u = 1 with homogeneous Dirichlet // boundary conditions. Finite element spaces of any order, // including zero on regular grids, are supported. The example // highlights the use of discontinuous spaces and DG-specific face // integrators. // // We recommend viewing examples 1 and 9 before viewing this // example. #include "mfem.hpp" #include #include using namespace std; using namespace mfem; int main(int argc, char *argv[]) { // 1. Parse command-line options. const char *mesh_file = "../data/star.mesh"; int ref_levels = -1; int order = 1; double sigma = -1.0; double kappa = -1.0; double eta = 0.0; bool visualization = 1; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&ref_levels, "-r", "--refine", "Number of times to refine the mesh uniformly, -1 for auto."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree) >= 0."); args.AddOption(&sigma, "-s", "--sigma", "One of the three DG penalty parameters, typically +1/-1." " See the documentation of class DGDiffusionIntegrator."); args.AddOption(&kappa, "-k", "--kappa", "One of the three DG penalty parameters, should be positive." " Negative values are replaced with (order+1)^2."); args.AddOption(&eta, "-e", "--eta", "BR2 penalty parameter."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.Parse(); if (!args.Good()) { args.PrintUsage(cout); return 1; } if (kappa < 0) { kappa = (order+1)*(order+1); } args.PrintOptions(cout); // 2. Read the mesh from the given mesh file. We can handle triangular, // quadrilateral, tetrahedral and hexahedral meshes with the same code. // NURBS meshes are projected to second order meshes. Mesh *mesh = new Mesh(mesh_file, 1, 1); int dim = mesh->Dimension(); // 3. Refine the mesh to increase the resolution. In this example we do // 'ref_levels' of uniform refinement. By default, or if ref_levels < 0, // we choose it to be the largest number that gives a final mesh with no // more than 50,000 elements. { if (ref_levels < 0) { ref_levels = (int)floor(log(50000./mesh->GetNE())/log(2.)/dim); } for (int l = 0; l < ref_levels; l++) { mesh->UniformRefinement(); } } if (mesh->NURBSext) { mesh->SetCurvature(max(order, 1)); } // 4. Define a finite element space on the mesh. Here we use discontinuous // finite elements of the specified order >= 0. FiniteElementCollection *fec = new DG_FECollection(order, dim); FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec); cout << "Number of unknowns: " << fespace->GetVSize() << endl; // 5. Set up the linear form b(.) which corresponds to the right-hand side of // the FEM linear system. LinearForm *b = new LinearForm(fespace); ConstantCoefficient one(1.0); ConstantCoefficient zero(0.0); b->AddDomainIntegrator(new DomainLFIntegrator(one)); b->AddBdrFaceIntegrator( new DGDirichletLFIntegrator(zero, one, sigma, kappa)); b->Assemble(); // 6. Define the solution vector x as a finite element grid function // corresponding to fespace. Initialize x with initial guess of zero. GridFunction x(fespace); x = 0.0; // 7. Set up the bilinear form a(.,.) on the finite element space // corresponding to the Laplacian operator -Delta, by adding the Diffusion // domain integrator and the interior and boundary DG face integrators. // Note that boundary conditions are imposed weakly in the form, so there // is no need for dof elimination. After assembly and finalizing we // extract the corresponding sparse matrix A. BilinearForm *a = new BilinearForm(fespace); a->AddDomainIntegrator(new DiffusionIntegrator(one)); a->AddInteriorFaceIntegrator(new DGDiffusionIntegrator(one, sigma, kappa)); a->AddBdrFaceIntegrator(new DGDiffusionIntegrator(one, sigma, kappa)); if (eta > 0) { a->AddInteriorFaceIntegrator(new DGDiffusionBR2Integrator(*fespace, eta)); a->AddBdrFaceIntegrator(new DGDiffusionBR2Integrator(*fespace, eta)); } a->Assemble(); a->Finalize(); const SparseMatrix &A = a->SpMat(); #ifndef MFEM_USE_SUITESPARSE // 8. Define a simple symmetric Gauss-Seidel preconditioner and use it to // solve the system Ax=b with PCG in the symmetric case, and GMRES in the // non-symmetric one. GSSmoother M(A); if (sigma == -1.0) { PCG(A, M, *b, x, 1, 500, 1e-12, 0.0); } else { GMRES(A, M, *b, x, 1, 500, 10, 1e-12, 0.0); } #else // 8. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system. UMFPackSolver umf_solver; umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS; umf_solver.SetOperator(A); umf_solver.Mult(*b, x); #endif // 9. Save the refined mesh and the solution. This output can be viewed later // using GLVis: "glvis -m refined.mesh -g sol.gf". ofstream mesh_ofs("refined.mesh"); mesh_ofs.precision(8); mesh->Print(mesh_ofs); ofstream sol_ofs("sol.gf"); sol_ofs.precision(8); x.Save(sol_ofs); // 10. Send the solution by socket to a GLVis server. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock.precision(8); sol_sock << "solution\n" << *mesh << x << flush; } // 11. Free the used memory. delete a; delete b; delete fespace; delete fec; delete mesh; return 0; }