// MFEM Example 14 - Parallel Version // // Compile with: make ex14p // // Sample runs: mpirun -np 4 ex14p -m ../data/inline-quad.mesh -o 0 // mpirun -np 4 ex14p -m ../data/star.mesh -o 2 // mpirun -np 4 ex14p -m ../data/star-mixed.mesh -o 2 // mpirun -np 4 ex14p -m ../data/star-mixed.mesh -o 2 -k 0 -e 1 // mpirun -np 4 ex14p -m ../data/escher.mesh -s 1 // mpirun -np 4 ex14p -m ../data/fichera.mesh -s 1 -k 1 // mpirun -np 4 ex14p -m ../data/fichera-mixed.mesh -s 1 -k 1 // mpirun -np 4 ex14p -m ../data/square-disc-p2.vtk -o 2 // mpirun -np 4 ex14p -m ../data/square-disc-p3.mesh -o 3 // mpirun -np 4 ex14p -m ../data/square-disc-nurbs.mesh -o 1 // mpirun -np 4 ex14p -m ../data/disc-nurbs.mesh -rs 4 -o 2 -s 1 -k 0 // mpirun -np 4 ex14p -m ../data/pipe-nurbs.mesh -o 1 // mpirun -np 4 ex14p -m ../data/inline-segment.mesh -rs 5 // mpirun -np 4 ex14p -m ../data/amr-quad.mesh -rs 3 // mpirun -np 4 ex14p -m ../data/amr-hex.mesh // // Description: This example code demonstrates the use of MFEM to define a // discontinuous Galerkin (DG) finite element discretization of // the Laplace problem -Delta u = 1 with homogeneous Dirichlet // boundary conditions. Finite element spaces of any order, // including zero on regular grids, are supported. The example // highlights the use of discontinuous spaces and DG-specific face // integrators. // // We recommend viewing examples 1 and 9 before viewing this // example. #include "mfem.hpp" #include #include using namespace std; using namespace mfem; class CustomSolverMonitor : public IterativeSolverMonitor { public: CustomSolverMonitor(const ParMesh *m, ParGridFunction *f) : pmesh(m), pgf(f) {} void MonitorSolution(int i, double norm, const Vector &x, bool final) { char vishost[] = "localhost"; int visport = 19916; int num_procs, myid; MPI_Comm_size(pmesh->GetComm(),&num_procs); MPI_Comm_rank(pmesh->GetComm(),&myid); pgf->SetFromTrueDofs(x); socketstream sol_sock(vishost, visport); sol_sock << "parallel " << num_procs << " " << myid << "\n"; sol_sock.precision(8); sol_sock << "solution\n" << *pmesh << *pgf << "window_title 'Iteration no " << i << "'" << "keys rRjlc\n" << flush; } private: const ParMesh *pmesh; ParGridFunction *pgf; }; int main(int argc, char *argv[]) { // 1. Initialize MPI and HYPRE. Mpi::Init(argc, argv); int num_procs = Mpi::WorldSize(); int myid = Mpi::WorldRank(); Hypre::Init(); // 2. Parse command-line options. const char *mesh_file = "../data/star.mesh"; int ser_ref_levels = -1; int par_ref_levels = 2; int order = 1; double sigma = -1.0; double kappa = -1.0; double eta = 0.0; bool visualization = 1; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&ser_ref_levels, "-rs", "--refine-serial", "Number of times to refine the mesh uniformly in serial," " -1 for auto."); args.AddOption(&par_ref_levels, "-rp", "--refine-parallel", "Number of times to refine the mesh uniformly in parallel."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree) >= 0."); args.AddOption(&sigma, "-s", "--sigma", "One of the three DG penalty parameters, typically +1/-1." " See the documentation of class DGDiffusionIntegrator."); args.AddOption(&kappa, "-k", "--kappa", "One of the three DG penalty parameters, should be positive." " Negative values are replaced with (order+1)^2."); args.AddOption(&eta, "-e", "--eta", "BR2 penalty parameter."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.Parse(); if (!args.Good()) { if (myid == 0) { args.PrintUsage(cout); } return 1; } if (kappa < 0) { kappa = (order+1)*(order+1); } if (myid == 0) { args.PrintOptions(cout); } // 3. Read the (serial) mesh from the given mesh file on all processors. We // can handle triangular, quadrilateral, tetrahedral and hexahedral meshes // with the same code. NURBS meshes are projected to second order meshes. Mesh *mesh = new Mesh(mesh_file, 1, 1); int dim = mesh->Dimension(); // 4. Refine the serial mesh on all processors to increase the resolution. In // this example we do 'ser_ref_levels' of uniform refinement. By default, // or if ser_ref_levels < 0, we choose it to be the largest number that // gives a final mesh with no more than 50,000 elements. { if (ser_ref_levels < 0) { ser_ref_levels = (int)floor(log(10000./mesh->GetNE())/log(2.)/dim); } for (int l = 0; l < ser_ref_levels; l++) { mesh->UniformRefinement(); } } if (mesh->NURBSext) { mesh->SetCurvature(max(order, 1)); } // 5. Define a parallel mesh by a partitioning of the serial mesh. Refine // this mesh further in parallel to increase the resolution. Once the // parallel mesh is defined, the serial mesh can be deleted. ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh); delete mesh; { for (int l = 0; l < par_ref_levels; l++) { pmesh->UniformRefinement(); } } // 6. Define a parallel finite element space on the parallel mesh. Here we // use discontinuous finite elements of the specified order >= 0. FiniteElementCollection *fec = new DG_FECollection(order, dim); ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec); HYPRE_BigInt size = fespace->GlobalTrueVSize(); if (myid == 0) { cout << "Number of unknowns: " << size << endl; } // 7. Set up the parallel linear form b(.) which corresponds to the // right-hand side of the FEM linear system. ParLinearForm *b = new ParLinearForm(fespace); ConstantCoefficient one(1.0); ConstantCoefficient zero(0.0); b->AddDomainIntegrator(new DomainLFIntegrator(one)); b->AddBdrFaceIntegrator( new DGDirichletLFIntegrator(zero, one, sigma, kappa)); b->Assemble(); // 8. Define the solution vector x as a parallel finite element grid function // corresponding to fespace. Initialize x with initial guess of zero. ParGridFunction x(fespace); x = 0.0; // 9. Set up the bilinear form a(.,.) on the finite element space // corresponding to the Laplacian operator -Delta, by adding the Diffusion // domain integrator and the interior and boundary DG face integrators. // Note that boundary conditions are imposed weakly in the form, so there // is no need for dof elimination. After serial and parallel assembly we // extract the corresponding parallel matrix A. ParBilinearForm *a = new ParBilinearForm(fespace); a->AddDomainIntegrator(new DiffusionIntegrator(one)); a->AddInteriorFaceIntegrator(new DGDiffusionIntegrator(one, sigma, kappa)); a->AddBdrFaceIntegrator(new DGDiffusionIntegrator(one, sigma, kappa)); if (eta > 0) { a->AddInteriorFaceIntegrator(new DGDiffusionBR2Integrator(*fespace, eta)); a->AddBdrFaceIntegrator(new DGDiffusionBR2Integrator(*fespace, eta)); } a->Assemble(); a->Finalize(); // 10. Define the parallel (hypre) matrix and vectors representing a(.,.), // b(.) and the finite element approximation. HypreParMatrix *A = a->ParallelAssemble(); HypreParVector *B = b->ParallelAssemble(); HypreParVector *X = x.ParallelProject(); delete a; delete b; // 11. Depending on the symmetry of A, define and apply a parallel PCG or // GMRES solver for AX=B using the BoomerAMG preconditioner from hypre. HypreSolver *amg = new HypreBoomerAMG(*A); if (sigma == -1.0) { HyprePCG pcg(*A); pcg.SetTol(1e-12); pcg.SetMaxIter(500); pcg.SetPrintLevel(2); pcg.SetPreconditioner(*amg); pcg.Mult(*B, *X); } else { CustomSolverMonitor monitor(pmesh, &x); GMRESSolver gmres(MPI_COMM_WORLD); gmres.SetAbsTol(0.0); gmres.SetRelTol(1e-12); gmres.SetMaxIter(500); gmres.SetKDim(10); gmres.SetPrintLevel(1); gmres.SetOperator(*A); gmres.SetPreconditioner(*amg); gmres.SetMonitor(monitor); gmres.Mult(*B, *X); } delete amg; // 12. Extract the parallel grid function corresponding to the finite element // approximation X. This is the local solution on each processor. x = *X; // 13. Save the refined mesh and the solution in parallel. This output can // be viewed later using GLVis: "glvis -np -m mesh -g sol". { ostringstream mesh_name, sol_name; mesh_name << "mesh." << setfill('0') << setw(6) << myid; sol_name << "sol." << setfill('0') << setw(6) << myid; ofstream mesh_ofs(mesh_name.str().c_str()); mesh_ofs.precision(8); pmesh->Print(mesh_ofs); ofstream sol_ofs(sol_name.str().c_str()); sol_ofs.precision(8); x.Save(sol_ofs); } // 14. Send the solution by socket to a GLVis server. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock << "parallel " << num_procs << " " << myid << "\n"; sol_sock.precision(8); sol_sock << "solution\n" << *pmesh << x << flush; } // 15. Free the used memory. delete X; delete B; delete A; delete fespace; delete fec; delete pmesh; return 0; }