// MFEM Example 16 // // Compile with: make ex16 // // Sample runs: ex16 // ex16 -m ../data/inline-tri.mesh // ex16 -m ../data/disc-nurbs.mesh -tf 2 // ex16 -s 1 -a 0.0 -k 1.0 // ex16 -s 2 -a 1.0 -k 0.0 // ex16 -s 3 -a 0.5 -k 0.5 -o 4 // ex16 -s 14 -dt 1.0e-4 -tf 4.0e-2 -vs 40 // ex16 -m ../data/fichera-q2.mesh // ex16 -m ../data/fichera-mixed.mesh // ex16 -m ../data/escher.mesh // ex16 -m ../data/beam-tet.mesh -tf 10 -dt 0.1 // ex16 -m ../data/amr-quad.mesh -o 4 -r 0 // ex16 -m ../data/amr-hex.mesh -o 2 -r 0 // // Description: This example solves a time dependent nonlinear heat equation // problem of the form du/dt = C(u), with a non-linear diffusion // operator C(u) = \nabla \cdot (\kappa + \alpha u) \nabla u. // // The example demonstrates the use of nonlinear operators (the // class ConductionOperator defining C(u)), as well as their // implicit time integration. Note that implementing the method // ConductionOperator::ImplicitSolve is the only requirement for // high-order implicit (SDIRK) time integration. In this example, // the diffusion operator is linearized by evaluating with the // lagged solution from the previous timestep, so there is only // a linear solve. // // We recommend viewing examples 2, 9 and 10 before viewing this // example. #include "mfem.hpp" #include #include using namespace std; using namespace mfem; /** After spatial discretization, the conduction model can be written as: * * du/dt = M^{-1}(-Ku) * * where u is the vector representing the temperature, M is the mass matrix, * and K is the diffusion operator with diffusivity depending on u: * (\kappa + \alpha u). * * Class ConductionOperator represents the right-hand side of the above ODE. */ class ConductionOperator : public TimeDependentOperator { protected: FiniteElementSpace &fespace; Array ess_tdof_list; // this list remains empty for pure Neumann b.c. BilinearForm *M; BilinearForm *K; SparseMatrix Mmat, Kmat; SparseMatrix *T; // T = M + dt K double current_dt; CGSolver M_solver; // Krylov solver for inverting the mass matrix M DSmoother M_prec; // Preconditioner for the mass matrix M CGSolver T_solver; // Implicit solver for T = M + dt K DSmoother T_prec; // Preconditioner for the implicit solver double alpha, kappa; mutable Vector z; // auxiliary vector public: ConductionOperator(FiniteElementSpace &f, double alpha, double kappa, const Vector &u); virtual void Mult(const Vector &u, Vector &du_dt) const; /** Solve the Backward-Euler equation: k = f(u + dt*k, t), for the unknown k. This is the only requirement for high-order SDIRK implicit integration.*/ virtual void ImplicitSolve(const double dt, const Vector &u, Vector &k); /// Update the diffusion BilinearForm K using the given true-dof vector `u`. void SetParameters(const Vector &u); virtual ~ConductionOperator(); }; double InitialTemperature(const Vector &x); int main(int argc, char *argv[]) { // 1. Parse command-line options. const char *mesh_file = "../data/star.mesh"; int ref_levels = 2; int order = 2; int ode_solver_type = 3; double t_final = 0.5; double dt = 1.0e-2; double alpha = 1.0e-2; double kappa = 0.5; bool visualization = true; bool visit = false; int vis_steps = 5; int precision = 8; cout.precision(precision); OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&ref_levels, "-r", "--refine", "Number of times to refine the mesh uniformly."); args.AddOption(&order, "-o", "--order", "Order (degree) of the finite elements."); args.AddOption(&ode_solver_type, "-s", "--ode-solver", "ODE solver: 1 - Backward Euler, 2 - SDIRK2, 3 - SDIRK3,\n\t" "\t 11 - Forward Euler, 12 - RK2, 13 - RK3 SSP, 14 - RK4."); args.AddOption(&t_final, "-tf", "--t-final", "Final time; start time is 0."); args.AddOption(&dt, "-dt", "--time-step", "Time step."); args.AddOption(&alpha, "-a", "--alpha", "Alpha coefficient."); args.AddOption(&kappa, "-k", "--kappa", "Kappa coefficient offset."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit", "--no-visit-datafiles", "Save data files for VisIt (visit.llnl.gov) visualization."); args.AddOption(&vis_steps, "-vs", "--visualization-steps", "Visualize every n-th timestep."); args.Parse(); if (!args.Good()) { args.PrintUsage(cout); return 1; } args.PrintOptions(cout); // 2. Read the mesh from the given mesh file. We can handle triangular, // quadrilateral, tetrahedral and hexahedral meshes with the same code. Mesh *mesh = new Mesh(mesh_file, 1, 1); int dim = mesh->Dimension(); // 3. Define the ODE solver used for time integration. Several implicit // singly diagonal implicit Runge-Kutta (SDIRK) methods, as well as // explicit Runge-Kutta methods are available. ODESolver *ode_solver; switch (ode_solver_type) { // Implicit L-stable methods case 1: ode_solver = new BackwardEulerSolver; break; case 2: ode_solver = new SDIRK23Solver(2); break; case 3: ode_solver = new SDIRK33Solver; break; // Explicit methods case 11: ode_solver = new ForwardEulerSolver; break; case 12: ode_solver = new RK2Solver(0.5); break; // midpoint method case 13: ode_solver = new RK3SSPSolver; break; case 14: ode_solver = new RK4Solver; break; case 15: ode_solver = new GeneralizedAlphaSolver(0.5); break; // Implicit A-stable methods (not L-stable) case 22: ode_solver = new ImplicitMidpointSolver; break; case 23: ode_solver = new SDIRK23Solver; break; case 24: ode_solver = new SDIRK34Solver; break; default: cout << "Unknown ODE solver type: " << ode_solver_type << '\n'; delete mesh; return 3; } // 4. Refine the mesh to increase the resolution. In this example we do // 'ref_levels' of uniform refinement, where 'ref_levels' is a // command-line parameter. for (int lev = 0; lev < ref_levels; lev++) { mesh->UniformRefinement(); } // 5. Define the vector finite element space representing the current and the // initial temperature, u_ref. H1_FECollection fe_coll(order, dim); FiniteElementSpace fespace(mesh, &fe_coll); int fe_size = fespace.GetTrueVSize(); cout << "Number of temperature unknowns: " << fe_size << endl; GridFunction u_gf(&fespace); // 6. Set the initial conditions for u. All boundaries are considered // natural. FunctionCoefficient u_0(InitialTemperature); u_gf.ProjectCoefficient(u_0); Vector u; u_gf.GetTrueDofs(u); // 7. Initialize the conduction operator and the visualization. ConductionOperator oper(fespace, alpha, kappa, u); u_gf.SetFromTrueDofs(u); { ofstream omesh("ex16.mesh"); omesh.precision(precision); mesh->Print(omesh); ofstream osol("ex16-init.gf"); osol.precision(precision); u_gf.Save(osol); } VisItDataCollection visit_dc("Example16", mesh); visit_dc.RegisterField("temperature", &u_gf); if (visit) { visit_dc.SetCycle(0); visit_dc.SetTime(0.0); visit_dc.Save(); } socketstream sout; if (visualization) { char vishost[] = "localhost"; int visport = 19916; sout.open(vishost, visport); if (!sout) { cout << "Unable to connect to GLVis server at " << vishost << ':' << visport << endl; visualization = false; cout << "GLVis visualization disabled.\n"; } else { sout.precision(precision); sout << "solution\n" << *mesh << u_gf; sout << "pause\n"; sout << flush; cout << "GLVis visualization paused." << " Press space (in the GLVis window) to resume it.\n"; } } // 8. Perform time-integration (looping over the time iterations, ti, with a // time-step dt). ode_solver->Init(oper); double t = 0.0; bool last_step = false; for (int ti = 1; !last_step; ti++) { if (t + dt >= t_final - dt/2) { last_step = true; } ode_solver->Step(u, t, dt); if (last_step || (ti % vis_steps) == 0) { cout << "step " << ti << ", t = " << t << endl; u_gf.SetFromTrueDofs(u); if (visualization) { sout << "solution\n" << *mesh << u_gf << flush; } if (visit) { visit_dc.SetCycle(ti); visit_dc.SetTime(t); visit_dc.Save(); } } oper.SetParameters(u); } // 9. Save the final solution. This output can be viewed later using GLVis: // "glvis -m ex16.mesh -g ex16-final.gf". { ofstream osol("ex16-final.gf"); osol.precision(precision); u_gf.Save(osol); } // 10. Free the used memory. delete ode_solver; delete mesh; return 0; } ConductionOperator::ConductionOperator(FiniteElementSpace &f, double al, double kap, const Vector &u) : TimeDependentOperator(f.GetTrueVSize(), 0.0), fespace(f), M(NULL), K(NULL), T(NULL), current_dt(0.0), z(height) { const double rel_tol = 1e-8; M = new BilinearForm(&fespace); M->AddDomainIntegrator(new MassIntegrator()); M->Assemble(); M->FormSystemMatrix(ess_tdof_list, Mmat); M_solver.iterative_mode = false; M_solver.SetRelTol(rel_tol); M_solver.SetAbsTol(0.0); M_solver.SetMaxIter(30); M_solver.SetPrintLevel(0); M_solver.SetPreconditioner(M_prec); M_solver.SetOperator(Mmat); alpha = al; kappa = kap; T_solver.iterative_mode = false; T_solver.SetRelTol(rel_tol); T_solver.SetAbsTol(0.0); T_solver.SetMaxIter(100); T_solver.SetPrintLevel(0); T_solver.SetPreconditioner(T_prec); SetParameters(u); } void ConductionOperator::Mult(const Vector &u, Vector &du_dt) const { // Compute: // du_dt = M^{-1}*-Ku // for du_dt, where K is linearized by using u from the previous timestep Kmat.Mult(u, z); z.Neg(); // z = -z M_solver.Mult(z, du_dt); } void ConductionOperator::ImplicitSolve(const double dt, const Vector &u, Vector &du_dt) { // Solve the equation: // du_dt = M^{-1}*[-K(u + dt*du_dt)] // for du_dt, where K is linearized by using u from the previous timestep if (!T) { T = Add(1.0, Mmat, dt, Kmat); current_dt = dt; T_solver.SetOperator(*T); } MFEM_VERIFY(dt == current_dt, ""); // SDIRK methods use the same dt Kmat.Mult(u, z); z.Neg(); T_solver.Mult(z, du_dt); } void ConductionOperator::SetParameters(const Vector &u) { GridFunction u_alpha_gf(&fespace); u_alpha_gf.SetFromTrueDofs(u); for (int i = 0; i < u_alpha_gf.Size(); i++) { u_alpha_gf(i) = kappa + alpha*u_alpha_gf(i); } delete K; K = new BilinearForm(&fespace); GridFunctionCoefficient u_coeff(&u_alpha_gf); K->AddDomainIntegrator(new DiffusionIntegrator(u_coeff)); K->Assemble(); K->FormSystemMatrix(ess_tdof_list, Kmat); delete T; T = NULL; // re-compute T on the next ImplicitSolve } ConductionOperator::~ConductionOperator() { delete T; delete M; delete K; } double InitialTemperature(const Vector &x) { if (x.Norml2() < 0.5) { return 2.0; } else { return 1.0; } }