// MFEM Example 18 // // Compile with: make ex18 // // Sample runs: // // ex18 -p 1 -r 2 -o 1 -s 3 // ex18 -p 1 -r 1 -o 3 -s 4 // ex18 -p 1 -r 0 -o 5 -s 6 // ex18 -p 2 -r 1 -o 1 -s 3 // ex18 -p 2 -r 0 -o 3 -s 3 // // Description: This example code solves the compressible Euler system of // equations, a model nonlinear hyperbolic PDE, with a // discontinuous Galerkin (DG) formulation. // // Specifically, it solves for an exact solution of the equations // whereby a vortex is transported by a uniform flow. Since all // boundaries are periodic here, the method's accuracy can be // assessed by measuring the difference between the solution and // the initial condition at a later time when the vortex returns // to its initial location. // // Note that as the order of the spatial discretization increases, // the timestep must become smaller. This example currently uses a // simple estimate derived by Cockburn and Shu for the 1D RKDG // method. An additional factor can be tuned by passing the --cfl // (or -c shorter) flag. // // The example demonstrates user-defined bilinear and nonlinear // form integrators for systems of equations that are defined with // block vectors, and how these are used with an operator for // explicit time integrators. In this case the system also // involves an external approximate Riemann solver for the DG // interface flux. It also demonstrates how to use GLVis for // in-situ visualization of vector grid functions. // // We recommend viewing examples 9, 14 and 17 before viewing this // example. #include "mfem.hpp" #include #include #include // Classes FE_Evolution, RiemannSolver, and FaceIntegrator // shared between the serial and parallel version of the example. #include "ex18.hpp" // Choice for the problem setup. See InitialCondition in ex18.hpp. int problem; // Equation constant parameters. const int num_equation = 4; const double specific_heat_ratio = 1.4; const double gas_constant = 1.0; // Maximum characteristic speed (updated by integrators) double max_char_speed; int main(int argc, char *argv[]) { // 1. Parse command-line options. problem = 1; const char *mesh_file = "../data/periodic-square.mesh"; int ref_levels = 1; int order = 3; int ode_solver_type = 4; double t_final = 2.0; double dt = -0.01; double cfl = 0.3; bool visualization = true; int vis_steps = 50; int precision = 8; cout.precision(precision); OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&problem, "-p", "--problem", "Problem setup to use. See options in velocity_function()."); args.AddOption(&ref_levels, "-r", "--refine", "Number of times to refine the mesh uniformly."); args.AddOption(&order, "-o", "--order", "Order (degree) of the finite elements."); args.AddOption(&ode_solver_type, "-s", "--ode-solver", "ODE solver: 1 - Forward Euler,\n\t" " 2 - RK2 SSP, 3 - RK3 SSP, 4 - RK4, 6 - RK6."); args.AddOption(&t_final, "-tf", "--t-final", "Final time; start time is 0."); args.AddOption(&dt, "-dt", "--time-step", "Time step. Positive number skips CFL timestep calculation."); args.AddOption(&cfl, "-c", "--cfl-number", "CFL number for timestep calculation."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(&vis_steps, "-vs", "--visualization-steps", "Visualize every n-th timestep."); args.Parse(); if (!args.Good()) { args.PrintUsage(cout); return 1; } args.PrintOptions(cout); // 2. Read the mesh from the given mesh file. This example requires a 2D // periodic mesh, such as ../data/periodic-square.mesh. Mesh mesh(mesh_file, 1, 1); const int dim = mesh.Dimension(); MFEM_ASSERT(dim == 2, "Need a two-dimensional mesh for the problem definition"); // 3. Define the ODE solver used for time integration. Several explicit // Runge-Kutta methods are available. ODESolver *ode_solver = NULL; switch (ode_solver_type) { case 1: ode_solver = new ForwardEulerSolver; break; case 2: ode_solver = new RK2Solver(1.0); break; case 3: ode_solver = new RK3SSPSolver; break; case 4: ode_solver = new RK4Solver; break; case 6: ode_solver = new RK6Solver; break; default: cout << "Unknown ODE solver type: " << ode_solver_type << '\n'; return 3; } // 4. Refine the mesh to increase the resolution. In this example we do // 'ref_levels' of uniform refinement, where 'ref_levels' is a // command-line parameter. for (int lev = 0; lev < ref_levels; lev++) { mesh.UniformRefinement(); } // 5. Define the discontinuous DG finite element space of the given // polynomial order on the refined mesh. DG_FECollection fec(order, dim); // Finite element space for a scalar (thermodynamic quantity) FiniteElementSpace fes(&mesh, &fec); // Finite element space for a mesh-dim vector quantity (momentum) FiniteElementSpace dfes(&mesh, &fec, dim, Ordering::byNODES); // Finite element space for all variables together (total thermodynamic state) FiniteElementSpace vfes(&mesh, &fec, num_equation, Ordering::byNODES); // This example depends on this ordering of the space. MFEM_ASSERT(fes.GetOrdering() == Ordering::byNODES, ""); cout << "Number of unknowns: " << vfes.GetVSize() << endl; // 6. Define the initial conditions, save the corresponding mesh and grid // functions to a file. This can be opened with GLVis with the -gc option. // The solution u has components {density, x-momentum, y-momentum, energy}. // These are stored contiguously in the BlockVector u_block. Array offsets(num_equation + 1); for (int k = 0; k <= num_equation; k++) { offsets[k] = k * vfes.GetNDofs(); } BlockVector u_block(offsets); // Momentum grid function on dfes for visualization. GridFunction mom(&dfes, u_block.GetData() + offsets[1]); // Initialize the state. VectorFunctionCoefficient u0(num_equation, InitialCondition); GridFunction sol(&vfes, u_block.GetData()); sol.ProjectCoefficient(u0); // Output the initial solution. { ofstream mesh_ofs("vortex.mesh"); mesh_ofs.precision(precision); mesh_ofs << mesh; for (int k = 0; k < num_equation; k++) { GridFunction uk(&fes, u_block.GetBlock(k)); ostringstream sol_name; sol_name << "vortex-" << k << "-init.gf"; ofstream sol_ofs(sol_name.str().c_str()); sol_ofs.precision(precision); sol_ofs << uk; } } // 7. Set up the nonlinear form corresponding to the DG discretization of the // flux divergence, and assemble the corresponding mass matrix. MixedBilinearForm Aflux(&dfes, &fes); Aflux.AddDomainIntegrator(new TransposeIntegrator(new GradientIntegrator())); Aflux.Assemble(); NonlinearForm A(&vfes); RiemannSolver rsolver; A.AddInteriorFaceIntegrator(new FaceIntegrator(rsolver, dim)); // 8. Define the time-dependent evolution operator describing the ODE // right-hand side, and perform time-integration (looping over the time // iterations, ti, with a time-step dt). FE_Evolution euler(vfes, A, Aflux.SpMat()); // Visualize the density socketstream sout; if (visualization) { char vishost[] = "localhost"; int visport = 19916; sout.open(vishost, visport); if (!sout) { cout << "Unable to connect to GLVis server at " << vishost << ':' << visport << endl; visualization = false; cout << "GLVis visualization disabled.\n"; } else { sout.precision(precision); sout << "solution\n" << mesh << mom; sout << "pause\n"; sout << flush; cout << "GLVis visualization paused." << " Press space (in the GLVis window) to resume it.\n"; } } // Determine the minimum element size. double hmin = 0.0; if (cfl > 0) { hmin = mesh.GetElementSize(0, 1); for (int i = 1; i < mesh.GetNE(); i++) { hmin = min(mesh.GetElementSize(i, 1), hmin); } } // Start the timer. tic_toc.Clear(); tic_toc.Start(); double t = 0.0; euler.SetTime(t); ode_solver->Init(euler); if (cfl > 0) { // Find a safe dt, using a temporary vector. Calling Mult() computes the // maximum char speed at all quadrature points on all faces. Vector z(A.Width()); max_char_speed = 0.; A.Mult(sol, z); dt = cfl * hmin / max_char_speed / (2*order+1); } // Integrate in time. bool done = false; for (int ti = 0; !done; ) { double dt_real = min(dt, t_final - t); ode_solver->Step(sol, t, dt_real); if (cfl > 0) { dt = cfl * hmin / max_char_speed / (2*order+1); } ti++; done = (t >= t_final - 1e-8*dt); if (done || ti % vis_steps == 0) { cout << "time step: " << ti << ", time: " << t << endl; if (visualization) { sout << "solution\n" << mesh << mom << flush; } } } tic_toc.Stop(); cout << " done, " << tic_toc.RealTime() << "s." << endl; // 9. Save the final solution. This output can be viewed later using GLVis: // "glvis -m vortex.mesh -g vortex-1-final.gf". for (int k = 0; k < num_equation; k++) { GridFunction uk(&fes, u_block.GetBlock(k)); ostringstream sol_name; sol_name << "vortex-" << k << "-final.gf"; ofstream sol_ofs(sol_name.str().c_str()); sol_ofs.precision(precision); sol_ofs << uk; } // 10. Compute the L2 solution error summed for all components. if (t_final == 2.0) { const double error = sol.ComputeLpError(2, u0); cout << "Solution error: " << error << endl; } // Free the used memory. delete ode_solver; return 0; }