// MFEM Example 2 // // Compile with: make ex2 // // Sample runs: ex2 -m ../data/beam-tri.mesh // ex2 -m ../data/beam-quad.mesh // ex2 -m ../data/beam-tet.mesh // ex2 -m ../data/beam-hex.mesh // ex2 -m ../data/beam-wedge.mesh // ex2 -m ../data/beam-quad.mesh -o 3 -sc // ex2 -m ../data/beam-quad-nurbs.mesh // ex2 -m ../data/beam-hex-nurbs.mesh // // Description: This example code solves a simple linear elasticity problem // describing a multi-material cantilever beam. // // Specifically, we approximate the weak form of -div(sigma(u))=0 // where sigma(u)=lambda*div(u)*I+mu*(grad*u+u*grad) is the stress // tensor corresponding to displacement field u, and lambda and mu // are the material Lame constants. The boundary conditions are // u=0 on the fixed part of the boundary with attribute 1, and // sigma(u).n=f on the remainder with f being a constant pull down // vector on boundary elements with attribute 2, and zero // otherwise. The geometry of the domain is assumed to be as // follows: // // +----------+----------+ // boundary --->| material | material |<--- boundary // attribute 1 | 1 | 2 | attribute 2 // (fixed) +----------+----------+ (pull down) // // The example demonstrates the use of high-order and NURBS vector // finite element spaces with the linear elasticity bilinear form, // meshes with curved elements, and the definition of piece-wise // constant and vector coefficient objects. Static condensation is // also illustrated. // // We recommend viewing Example 1 before viewing this example. #include "mfem.hpp" #include #include using namespace std; using namespace mfem; int main(int argc, char *argv[]) { // 1. Parse command-line options. const char *mesh_file = "../data/beam-tri.mesh"; int order = 1; bool static_cond = false; bool visualization = 1; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree)."); args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc", "--no-static-condensation", "Enable static condensation."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.Parse(); if (!args.Good()) { args.PrintUsage(cout); return 1; } args.PrintOptions(cout); // 2. Read the mesh from the given mesh file. We can handle triangular, // quadrilateral, tetrahedral or hexahedral elements with the same code. Mesh *mesh = new Mesh(mesh_file, 1, 1); int dim = mesh->Dimension(); if (mesh->attributes.Max() < 2 || mesh->bdr_attributes.Max() < 2) { cerr << "\nInput mesh should have at least two materials and " << "two boundary attributes! (See schematic in ex2.cpp)\n" << endl; return 3; } // 3. Select the order of the finite element discretization space. For NURBS // meshes, we increase the order by degree elevation. if (mesh->NURBSext) { mesh->DegreeElevate(order, order); } // 4. Refine the mesh to increase the resolution. In this example we do // 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the // largest number that gives a final mesh with no more than 5,000 // elements. { int ref_levels = (int)floor(log(5000./mesh->GetNE())/log(2.)/dim); for (int l = 0; l < ref_levels; l++) { mesh->UniformRefinement(); } } // 5. Define a finite element space on the mesh. Here we use vector finite // elements, i.e. dim copies of a scalar finite element space. The vector // dimension is specified by the last argument of the FiniteElementSpace // constructor. For NURBS meshes, we use the (degree elevated) NURBS space // associated with the mesh nodes. FiniteElementCollection *fec; FiniteElementSpace *fespace; if (mesh->NURBSext) { fec = NULL; fespace = mesh->GetNodes()->FESpace(); } else { fec = new H1_FECollection(order, dim); fespace = new FiniteElementSpace(mesh, fec, dim); } cout << "Number of finite element unknowns: " << fespace->GetTrueVSize() << endl << "Assembling: " << flush; // 6. Determine the list of true (i.e. conforming) essential boundary dofs. // In this example, the boundary conditions are defined by marking only // boundary attribute 1 from the mesh as essential and converting it to a // list of true dofs. Array ess_tdof_list, ess_bdr(mesh->bdr_attributes.Max()); ess_bdr = 0; ess_bdr[0] = 1; fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list); // 7. Set up the linear form b(.) which corresponds to the right-hand side of // the FEM linear system. In this case, b_i equals the boundary integral // of f*phi_i where f represents a "pull down" force on the Neumann part // of the boundary and phi_i are the basis functions in the finite element // fespace. The force is defined by the VectorArrayCoefficient object f, // which is a vector of Coefficient objects. The fact that f is non-zero // on boundary attribute 2 is indicated by the use of piece-wise constants // coefficient for its last component. VectorArrayCoefficient f(dim); for (int i = 0; i < dim-1; i++) { f.Set(i, new ConstantCoefficient(0.0)); } { Vector pull_force(mesh->bdr_attributes.Max()); pull_force = 0.0; pull_force(1) = -1.0e-2; f.Set(dim-1, new PWConstCoefficient(pull_force)); } LinearForm *b = new LinearForm(fespace); b->AddBoundaryIntegrator(new VectorBoundaryLFIntegrator(f)); cout << "r.h.s. ... " << flush; b->Assemble(); // 8. Define the solution vector x as a finite element grid function // corresponding to fespace. Initialize x with initial guess of zero, // which satisfies the boundary conditions. GridFunction x(fespace); x = 0.0; // 9. Set up the bilinear form a(.,.) on the finite element space // corresponding to the linear elasticity integrator with piece-wise // constants coefficient lambda and mu. Vector lambda(mesh->attributes.Max()); lambda = 1.0; lambda(0) = lambda(1)*50; PWConstCoefficient lambda_func(lambda); Vector mu(mesh->attributes.Max()); mu = 1.0; mu(0) = mu(1)*50; PWConstCoefficient mu_func(mu); BilinearForm *a = new BilinearForm(fespace); a->AddDomainIntegrator(new ElasticityIntegrator(lambda_func,mu_func)); // 10. Assemble the bilinear form and the corresponding linear system, // applying any necessary transformations such as: eliminating boundary // conditions, applying conforming constraints for non-conforming AMR, // static condensation, etc. cout << "matrix ... " << flush; if (static_cond) { a->EnableStaticCondensation(); } a->Assemble(); SparseMatrix A; Vector B, X; a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B); cout << "done." << endl; cout << "Size of linear system: " << A.Height() << endl; #ifndef MFEM_USE_SUITESPARSE // 11. Define a simple symmetric Gauss-Seidel preconditioner and use it to // solve the system Ax=b with PCG. GSSmoother M(A); PCG(A, M, B, X, 1, 500, 1e-8, 0.0); #else // 11. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system. UMFPackSolver umf_solver; umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS; umf_solver.SetOperator(A); umf_solver.Mult(B, X); #endif // 12. Recover the solution as a finite element grid function. a->RecoverFEMSolution(X, *b, x); // 13. For non-NURBS meshes, make the mesh curved based on the finite element // space. This means that we define the mesh elements through a fespace // based transformation of the reference element. This allows us to save // the displaced mesh as a curved mesh when using high-order finite // element displacement field. We assume that the initial mesh (read from // the file) is not higher order curved mesh compared to the chosen FE // space. if (!mesh->NURBSext) { mesh->SetNodalFESpace(fespace); } // 14. Save the displaced mesh and the inverted solution (which gives the // backward displacements to the original grid). This output can be // viewed later using GLVis: "glvis -m displaced.mesh -g sol.gf". { GridFunction *nodes = mesh->GetNodes(); *nodes += x; x *= -1; ofstream mesh_ofs("displaced.mesh"); mesh_ofs.precision(8); mesh->Print(mesh_ofs); ofstream sol_ofs("sol.gf"); sol_ofs.precision(8); x.Save(sol_ofs); } // 15. Send the above data by socket to a GLVis server. Use the "n" and "b" // keys in GLVis to visualize the displacements. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock.precision(8); sol_sock << "solution\n" << *mesh << x << flush; } // 16. Free the used memory. delete a; delete b; if (fec) { delete fespace; delete fec; } delete mesh; return 0; }