// MFEM Example 28 - Parallel Version // // Compile with: make ex28p // // Sample runs: ex28p // ex28p --visit-datafiles // ex28p --order 4 // ex28p --penalty 1e+5 // // mpirun -np 4 ex28p // mpirun -np 4 ex28p --penalty 1e+5 // // Description: Demonstrates a sliding boundary condition in an elasticity // problem. A trapezoid, roughly as pictured below, is pushed // from the right into a rigid notch. Normal displacement is // restricted, but tangential movement is allowed, so the // trapezoid compresses into the notch. // // /-------+ // normal constrained --->/ | <--- boundary force (2) // boundary (4) /---------+ // ^ // | // normal constrained boundary (1) // // This example demonstrates the use of the ConstrainedSolver // framework. // // We recommend viewing Example 2 before viewing this example. #include "mfem.hpp" #include #include using namespace std; using namespace mfem; // Return a mesh with a single element with vertices (0, 0), (1, 0), (1, 1), // (offset, 1) to demonstrate boundary conditions on a surface that is not // axis-aligned. Mesh * build_trapezoid_mesh(double offset) { MFEM_VERIFY(offset < 0.9, "offset is too large!"); const int dimension = 2; const int nvt = 4; // vertices const int nbe = 4; // num boundary elements Mesh * mesh = new Mesh(dimension, nvt, 1, nbe); // vertices double vc[dimension]; vc[0] = 0.0; vc[1] = 0.0; mesh->AddVertex(vc); vc[0] = 1.0; vc[1] = 0.0; mesh->AddVertex(vc); vc[0] = offset; vc[1] = 1.0; mesh->AddVertex(vc); vc[0] = 1.0; vc[1] = 1.0; mesh->AddVertex(vc); // element Array vert(4); vert[0] = 0; vert[1] = 1; vert[2] = 3; vert[3] = 2; mesh->AddQuad(vert, 1); // boundary Array sv(2); sv[0] = 0; sv[1] = 1; mesh->AddBdrSegment(sv, 1); sv[0] = 1; sv[1] = 3; mesh->AddBdrSegment(sv, 2); sv[0] = 2; sv[1] = 3; mesh->AddBdrSegment(sv, 3); sv[0] = 0; sv[1] = 2; mesh->AddBdrSegment(sv, 4); mesh->FinalizeQuadMesh(1, 0, true); return mesh; } int main(int argc, char *argv[]) { #ifdef HYPRE_USING_GPU cout << "\nAs of mfem-4.3 and hypre-2.22.0 (July 2021) this example\n" << "is NOT supported with the GPU version of hypre.\n\n"; return 242; #endif // 1. Initialize MPI and HYPRE. Mpi::Init(argc, argv); int num_procs = Mpi::WorldSize(); int myid = Mpi::WorldRank(); Hypre::Init(); // 2. Parse command-line options. int order = 1; bool visualization = 1; bool reorder_space = false; double offset = 0.3; bool visit = false; double penalty = 0.0; OptionsParser args(argc, argv); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree)."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(&reorder_space, "-nodes", "--by-nodes", "-vdim", "--by-vdim", "Use byNODES ordering of vector space instead of byVDIM"); args.AddOption(&offset, "--offset", "--offset", "How much to offset the trapezoid."); args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit", "--no-visit-datafiles", "Save data files for VisIt (visit.llnl.gov) visualization."); args.AddOption(&penalty, "-p", "--penalty", "Penalty parameter; 0 means use elimination solver."); args.Parse(); if (!args.Good()) { if (myid == 0) { args.PrintUsage(cout); } return 1; } if (myid == 0) { args.PrintOptions(cout); } // 3. Build a trapezoidal mesh with a single quadrilateral element, where // 'offset' determines how far off it is from a rectangle. Mesh *mesh = build_trapezoid_mesh(offset); int dim = mesh->Dimension(); // 4. Refine the serial mesh on all processors to increase the resolution. In // this example we do 'ref_levels' of uniform refinement. We choose // 'ref_levels' to be the largest number that gives a final mesh with no // more than 1,000 elements. { int ref_levels = (int)floor(log(1000./mesh->GetNE())/log(2.)/dim); for (int l = 0; l < ref_levels; l++) { mesh->UniformRefinement(); } } // 5. Define a parallel mesh by a partitioning of the serial mesh. Refine // this mesh further in parallel to increase the resolution. Once the // parallel mesh is defined, the serial mesh can be deleted. ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh); delete mesh; { int par_ref_levels = 1; for (int l = 0; l < par_ref_levels; l++) { pmesh->UniformRefinement(); } } // 6. Define a parallel finite element space on the parallel mesh. Here we // use vector finite elements, i.e. dim copies of a scalar finite element // space. We use the ordering by vector dimension (the last argument of // the FiniteElementSpace constructor) which is expected in the systems // version of BoomerAMG preconditioner. For NURBS meshes, we use the // (degree elevated) NURBS space associated with the mesh nodes. FiniteElementCollection *fec; ParFiniteElementSpace *fespace; const bool use_nodal_fespace = pmesh->NURBSext; if (use_nodal_fespace) { fec = NULL; fespace = (ParFiniteElementSpace *)pmesh->GetNodes()->FESpace(); } else { fec = new H1_FECollection(order, dim); if (reorder_space) { fespace = new ParFiniteElementSpace(pmesh, fec, dim, Ordering::byNODES); } else { fespace = new ParFiniteElementSpace(pmesh, fec, dim, Ordering::byVDIM); } } HYPRE_BigInt size = fespace->GlobalTrueVSize(); if (myid == 0) { cout << "Number of finite element unknowns: " << size << endl << "Assembling matrix and r.h.s... " << flush; } // 7. Determine the list of true (i.e. parallel conforming) essential // boundary dofs. In this example, there are no essential boundary // conditions in the usual sense, but we leave the machinery here for // users to modify if they wish. Array ess_tdof_list, ess_bdr(pmesh->bdr_attributes.Max()); ess_bdr = 0; fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list); // 8. Set up the parallel linear form b(.) which corresponds to the // right-hand side of the FEM linear system. In this case, b_i equals the // boundary integral of f*phi_i where f represents a "pull down" force on // the Neumann part of the boundary and phi_i are the basis functions in // the finite element fespace. The force is defined by the object f, which // is a vector of Coefficient objects. The fact that f is non-zero on // boundary attribute 2 is indicated by the use of piece-wise constants // coefficient for its last component. VectorArrayCoefficient f(dim); for (int i = 0; i < dim-1; i++) { f.Set(i, new ConstantCoefficient(0.0)); } // 9. Put a leftward force on the right side of the trapezoid { Vector push_force(pmesh->bdr_attributes.Max()); push_force = 0.0; push_force(1) = -5.0e-2; // index 1 attribute 2 f.Set(0, new PWConstCoefficient(push_force)); } ParLinearForm *b = new ParLinearForm(fespace); b->AddBoundaryIntegrator(new VectorBoundaryLFIntegrator(f)); b->Assemble(); // 10. Define the solution vector x as a parallel finite element grid // function corresponding to fespace. Initialize x with initial guess of // zero, which satisfies the boundary conditions. ParGridFunction x(fespace); x = 0.0; // 11. Set up the parallel bilinear form a(.,.) on the finite element space // corresponding to the linear elasticity integrator with piece-wise // constants coefficient lambda and mu. We use constant coefficients, // but see ex2 for how to set up piecewise constant coefficients based // on attribute. Vector lambda(pmesh->attributes.Max()); lambda = 1.0; PWConstCoefficient lambda_func(lambda); Vector mu(pmesh->attributes.Max()); mu = 1.0; PWConstCoefficient mu_func(mu); ParBilinearForm *a = new ParBilinearForm(fespace); a->AddDomainIntegrator(new ElasticityIntegrator(lambda_func, mu_func)); // 12. Assemble the parallel bilinear form and the corresponding linear // system, applying any necessary transformations such as: parallel // assembly, eliminating boundary conditions, applying conforming // constraints for non-conforming AMR, etc. a->Assemble(); HypreParMatrix A; Vector B, X; a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B); if (myid == 0) { cout << "done." << endl; cout << "Size of linear system: " << A.GetGlobalNumRows() << endl; } // 13. Set up constraint matrix to constrain normal displacement (but // allow tangential displacement) on specified boundaries. Array constraint_atts(2); constraint_atts[0] = 1; // attribute 1 bottom constraint_atts[1] = 4; // attribute 4 left side Array constraint_rowstarts; SparseMatrix* local_constraints = ParBuildNormalConstraints(*fespace, constraint_atts, constraint_rowstarts); // 14. Define and apply a parallel PCG solver for the constrained system // where the normal boundary constraints have been separately eliminated // from the system. ConstrainedSolver * solver; if (penalty == 0.0) { solver = new EliminationCGSolver(A, *local_constraints, constraint_rowstarts, dim, reorder_space); } else { solver = new PenaltyPCGSolver(A, *local_constraints, penalty, dim, reorder_space); } solver->SetRelTol(1e-8); solver->SetMaxIter(500); solver->SetPrintLevel(1); solver->Mult(B, X); // 15. Recover the parallel grid function corresponding to X. This is the // local finite element solution on each processor. a->RecoverFEMSolution(X, *b, x); // 16. For non-NURBS meshes, make the mesh curved based on the finite element // space. This means that we define the mesh elements through a fespace // based transformation of the reference element. This allows us to save // the displaced mesh as a curved mesh when using high-order finite // element displacement field. We assume that the initial mesh (read from // the file) is not higher order curved mesh compared to the chosen FE // space. if (!use_nodal_fespace) { pmesh->SetNodalFESpace(fespace); } GridFunction *nodes = pmesh->GetNodes(); *nodes += x; // 17. Save the refined mesh and the solution in VisIt format. if (visit) { VisItDataCollection visit_dc(MPI_COMM_WORLD, "ex28p", pmesh); visit_dc.SetLevelsOfDetail(4); visit_dc.RegisterField("displacement", &x); visit_dc.Save(); } // 18. Save in parallel the displaced mesh and the inverted solution (which // gives the backward displacements to the original grid). This output // can be viewed later using GLVis: "glvis -np -m mesh -g sol". { x *= -1; // sign convention for GLVis displacements ostringstream mesh_name, sol_name; mesh_name << "mesh." << setfill('0') << setw(6) << myid; sol_name << "sol." << setfill('0') << setw(6) << myid; ofstream mesh_ofs(mesh_name.str().c_str()); mesh_ofs.precision(8); pmesh->Print(mesh_ofs); ofstream sol_ofs(sol_name.str().c_str()); sol_ofs.precision(8); x.Save(sol_ofs); } // 19. Send the above data by socket to a GLVis server. Use the "n" and "b" // keys in GLVis to visualize the displacements. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock << "parallel " << num_procs << " " << myid << "\n"; sol_sock.precision(8); sol_sock << "solution\n" << *pmesh << x << flush; } // 20. Free the used memory. delete local_constraints; delete solver; delete a; delete b; if (fec) { delete fespace; delete fec; } delete pmesh; // HYPRE_Finalize(); return 0; }