// MFEM Example 31 // // Compile with: make ex31 // // Sample runs: ex31 -m ../data/inline-segment.mesh -o 2 // ex31 -m ../data/hexagon.mesh -o 2 // ex31 -m ../data/star.mesh -o 2 // ex31 -m ../data/fichera.mesh -o 3 -r 1 // ex31 -m ../data/square-disc-nurbs.mesh -o 3 // ex31 -m ../data/amr-quad.mesh -o 2 -r 1 // ex31 -m ../data/amr-hex.mesh -r 1 // // Description: This example code solves a simple electromagnetic diffusion // problem corresponding to the second order definite Maxwell // equation curl curl E + sigma E = f with boundary condition // E x n = . In this example sigma is an // anisotropic 3x3 tensor. Here, we use a given exact solution E // and compute the corresponding r.h.s. f. We discretize with // Nedelec finite elements in 1D, 2D, or 3D. // // The example demonstrates the use of restricted H(curl) finite // element spaces with the curl-curl and the (vector finite // element) mass bilinear form, as well as the computation of // discretization error when the exact solution is known. These // restricted spaces allow the solution of 1D or 2D // electromagnetic problems which involve 3D field vectors. Such // problems arise in plasma physics and crystallography. // // We recommend viewing example 3 before viewing this example. #include "mfem.hpp" #include #include using namespace std; using namespace mfem; // Exact solution, E, and r.h.s., f. See below for implementation. void E_exact(const Vector &, Vector &); void CurlE_exact(const Vector &, Vector &); void f_exact(const Vector &, Vector &); double freq = 1.0, kappa; int dim; int main(int argc, char *argv[]) { // 1. Parse command-line options. const char *mesh_file = "../data/inline-quad.mesh"; int ref_levels = 2; int order = 1; bool visualization = 1; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&ref_levels, "-r", "--refine", "Number of times to refine the mesh uniformly."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree)."); args.AddOption(&freq, "-f", "--frequency", "Set the frequency for the exact" " solution."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.ParseCheck(); kappa = freq * M_PI; // 2. Read the mesh from the given mesh file. We can handle triangular, // quadrilateral, or mixed meshes with the same code. Mesh mesh(mesh_file, 1, 1); dim = mesh.Dimension(); // 3. Refine the mesh to increase the resolution. In this example we do // 'ref_levels' of uniform refinement (2 by default, or specified on // the command line with -r). for (int lev = 0; lev < ref_levels; lev++) { mesh.UniformRefinement(); } // 4. Define a finite element space on the mesh. Here we use the Nedelec // finite elements of the specified order restricted to 1D, 2D, or 3D // depending on the dimension of the given mesh file. FiniteElementCollection *fec = NULL; if (dim == 1) { fec = new ND_R1D_FECollection(order, dim); } else if (dim == 2) { fec = new ND_R2D_FECollection(order, dim); } else { fec = new ND_FECollection(order, dim); } FiniteElementSpace fespace(&mesh, fec); int size = fespace.GetTrueVSize(); cout << "Number of H(Curl) unknowns: " << size << endl; // 5. Determine the list of true essential boundary dofs. In this example, // the boundary conditions are defined by marking all the boundary // attributes from the mesh as essential (Dirichlet) and converting them // to a list of true dofs. Array ess_tdof_list; if (mesh.bdr_attributes.Size()) { Array ess_bdr(mesh.bdr_attributes.Max()); ess_bdr = 1; fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list); } // 6. Set up the linear form b(.) which corresponds to the right-hand side // of the FEM linear system, which in this case is (f,phi_i) where f is // given by the function f_exact and phi_i are the basis functions in // the finite element fespace. VectorFunctionCoefficient f(3, f_exact); LinearForm b(&fespace); b.AddDomainIntegrator(new VectorFEDomainLFIntegrator(f)); b.Assemble(); // 7. Define the solution vector x as a finite element grid function // corresponding to fespace. Initialize x by projecting the exact // solution. Note that only values from the boundary edges will be used // when eliminating the non-homogeneous boundary condition to modify the // r.h.s. vector b. GridFunction sol(&fespace); VectorFunctionCoefficient E(3, E_exact); VectorFunctionCoefficient CurlE(3, CurlE_exact); sol.ProjectCoefficient(E); // 8. Set up the bilinear form corresponding to the EM diffusion operator // curl muinv curl + sigma I, by adding the curl-curl and the mass domain // integrators. DenseMatrix sigmaMat(3); sigmaMat(0,0) = 2.0; sigmaMat(1,1) = 2.0; sigmaMat(2,2) = 2.0; sigmaMat(0,2) = 0.0; sigmaMat(2,0) = 0.0; sigmaMat(0,1) = M_SQRT1_2; sigmaMat(1,0) = M_SQRT1_2; // 1/sqrt(2) in cmath sigmaMat(1,2) = M_SQRT1_2; sigmaMat(2,1) = M_SQRT1_2; ConstantCoefficient muinv(1.0); MatrixConstantCoefficient sigma(sigmaMat); BilinearForm a(&fespace); a.AddDomainIntegrator(new CurlCurlIntegrator(muinv)); a.AddDomainIntegrator(new VectorFEMassIntegrator(sigma)); // 9. Assemble the bilinear form and the corresponding linear system, // applying any necessary transformations such as: eliminating boundary // conditions, applying conforming constraints for non-conforming AMR, // etc. a.Assemble(); OperatorPtr A; Vector B, X; a.FormLinearSystem(ess_tdof_list, sol, b, A, X, B); // 10. Solve the system A X = B. #ifndef MFEM_USE_SUITESPARSE // 11. Define a simple symmetric Gauss-Seidel preconditioner and use it to // solve the system Ax=b with PCG. GSSmoother M((SparseMatrix&)(*A)); PCG(*A, M, B, X, 1, 500, 1e-12, 0.0); #else // 11. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the // system. UMFPackSolver umf_solver; umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS; umf_solver.SetOperator(*A); umf_solver.Mult(B, X); #endif // 12. Recover the solution as a finite element grid function. a.RecoverFEMSolution(X, b, sol); // 13. Compute and print the H(Curl) norm of the error. { double error = sol.ComputeHCurlError(&E, &CurlE); cout << "\n|| E_h - E ||_{H(Curl)} = " << error << '\n' << endl; } // 14. Save the refined mesh and the solution. This output can be viewed // later using GLVis: "glvis -m refined.mesh -g sol.gf". { ofstream mesh_ofs("refined.mesh"); mesh_ofs.precision(8); mesh.Print(mesh_ofs); ofstream sol_ofs("sol.gf"); sol_ofs.precision(8); sol.Save(sol_ofs); } // 15. Send the solution by socket to a GLVis server. if (visualization) { char vishost[] = "localhost"; int visport = 19916; VectorGridFunctionCoefficient solCoef(&sol); CurlGridFunctionCoefficient dsolCoef(&sol); if (dim ==1) { socketstream x_sock(vishost, visport); socketstream y_sock(vishost, visport); socketstream z_sock(vishost, visport); socketstream dy_sock(vishost, visport); socketstream dz_sock(vishost, visport); x_sock.precision(8); y_sock.precision(8); z_sock.precision(8); dy_sock.precision(8); dz_sock.precision(8); Vector xVec(3); xVec = 0.0; xVec(0) = 1; Vector yVec(3); yVec = 0.0; yVec(1) = 1; Vector zVec(3); zVec = 0.0; zVec(2) = 1; VectorConstantCoefficient xVecCoef(xVec); VectorConstantCoefficient yVecCoef(yVec); VectorConstantCoefficient zVecCoef(zVec); H1_FECollection fec_h1(order, dim); L2_FECollection fec_l2(order-1, dim); FiniteElementSpace fes_h1(&mesh, &fec_h1); FiniteElementSpace fes_l2(&mesh, &fec_l2); GridFunction xComp(&fes_l2); GridFunction yComp(&fes_h1); GridFunction zComp(&fes_h1); GridFunction dyComp(&fes_l2); GridFunction dzComp(&fes_l2); InnerProductCoefficient xCoef(xVecCoef, solCoef); InnerProductCoefficient yCoef(yVecCoef, solCoef); InnerProductCoefficient zCoef(zVecCoef, solCoef); xComp.ProjectCoefficient(xCoef); yComp.ProjectCoefficient(yCoef); zComp.ProjectCoefficient(zCoef); x_sock << "solution\n" << mesh << xComp << flush << "window_title 'X component'" << endl; y_sock << "solution\n" << mesh << yComp << flush << "window_geometry 403 0 400 350 " << "window_title 'Y component'" << endl; z_sock << "solution\n" << mesh << zComp << flush << "window_geometry 806 0 400 350 " << "window_title 'Z component'" << endl; InnerProductCoefficient dyCoef(yVecCoef, dsolCoef); InnerProductCoefficient dzCoef(zVecCoef, dsolCoef); dyComp.ProjectCoefficient(dyCoef); dzComp.ProjectCoefficient(dzCoef); dy_sock << "solution\n" << mesh << dyComp << flush << "window_geometry 403 375 400 350 " << "window_title 'Y component of Curl'" << endl; dz_sock << "solution\n" << mesh << dzComp << flush << "window_geometry 806 375 400 350 " << "window_title 'Z component of Curl'" << endl; } else if (dim == 2) { socketstream xy_sock(vishost, visport); socketstream z_sock(vishost, visport); socketstream dxy_sock(vishost, visport); socketstream dz_sock(vishost, visport); DenseMatrix xyMat(2,3); xyMat = 0.0; xyMat(0,0) = 1.0; xyMat(1,1) = 1.0; MatrixConstantCoefficient xyMatCoef(xyMat); Vector zVec(3); zVec = 0.0; zVec(2) = 1; VectorConstantCoefficient zVecCoef(zVec); MatrixVectorProductCoefficient xyCoef(xyMatCoef, solCoef); InnerProductCoefficient zCoef(zVecCoef, solCoef); H1_FECollection fec_h1(order, dim); ND_FECollection fec_nd(order, dim); RT_FECollection fec_rt(order-1, dim); L2_FECollection fec_l2(order-1, dim); FiniteElementSpace fes_h1(&mesh, &fec_h1); FiniteElementSpace fes_nd(&mesh, &fec_nd); FiniteElementSpace fes_rt(&mesh, &fec_rt); FiniteElementSpace fes_l2(&mesh, &fec_l2); GridFunction xyComp(&fes_nd); GridFunction zComp(&fes_h1); GridFunction dxyComp(&fes_rt); GridFunction dzComp(&fes_l2); xyComp.ProjectCoefficient(xyCoef); zComp.ProjectCoefficient(zCoef); xy_sock.precision(8); xy_sock << "solution\n" << mesh << xyComp << "window_title 'XY components'\n" << flush; z_sock << "solution\n" << mesh << zComp << flush << "window_geometry 403 0 400 350 " << "window_title 'Z component'" << endl; MatrixVectorProductCoefficient dxyCoef(xyMatCoef, dsolCoef); InnerProductCoefficient dzCoef(zVecCoef, dsolCoef); dxyComp.ProjectCoefficient(dxyCoef); dzComp.ProjectCoefficient(dzCoef); dxy_sock << "solution\n" << mesh << dxyComp << flush << "window_geometry 0 375 400 350 " << "window_title 'XY components of Curl'" << endl; dz_sock << "solution\n" << mesh << dzComp << flush << "window_geometry 403 375 400 350 " << "window_title 'Z component of Curl'" << endl; } else { socketstream sol_sock(vishost, visport); socketstream dsol_sock(vishost, visport); RT_FECollection fec_rt(order-1, dim); FiniteElementSpace fes_rt(&mesh, &fec_rt); GridFunction dsol(&fes_rt); dsol.ProjectCoefficient(dsolCoef); sol_sock.precision(8); sol_sock << "solution\n" << mesh << sol << "window_title 'Solution'" << flush << endl; dsol_sock << "solution\n" << mesh << dsol << flush << "window_geometry 0 375 400 350 " << "window_title 'Curl of solution'" << endl; } } // 16. Free the used memory. delete fec; return 0; } void E_exact(const Vector &x, Vector &E) { if (dim == 1) { E(0) = 1.1 * sin(kappa * x(0) + 0.0 * M_PI); E(1) = 1.2 * sin(kappa * x(0) + 0.4 * M_PI); E(2) = 1.3 * sin(kappa * x(0) + 0.9 * M_PI); } else if (dim == 2) { E(0) = 1.1 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI); E(1) = 1.2 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI); E(2) = 1.3 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI); } else { E(0) = 1.1 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI); E(1) = 1.2 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI); E(2) = 1.3 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI); E *= cos(kappa * x(2)); } } void CurlE_exact(const Vector &x, Vector &dE) { if (dim == 1) { double c4 = cos(kappa * x(0) + 0.4 * M_PI); double c9 = cos(kappa * x(0) + 0.9 * M_PI); dE(0) = 0.0; dE(1) = -1.3 * c9; dE(2) = 1.2 * c4; dE *= kappa; } else if (dim == 2) { double c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI); double c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI); double c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI); dE(0) = 1.3 * c9; dE(1) = -1.3 * c9; dE(2) = 1.2 * c4 - 1.1 * c0; dE *= kappa * M_SQRT1_2; } else { double s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI); double c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI); double s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI); double c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI); double c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI); double sk = sin(kappa * x(2)); double ck = cos(kappa * x(2)); dE(0) = 1.2 * s4 * sk + 1.3 * M_SQRT1_2 * c9 * ck; dE(1) = -1.1 * s0 * sk - 1.3 * M_SQRT1_2 * c9 * ck; dE(2) = -M_SQRT1_2 * (1.1 * c0 - 1.2 * c4) * ck; dE *= kappa; } } void f_exact(const Vector &x, Vector &f) { if (dim == 1) { double s0 = sin(kappa * x(0) + 0.0 * M_PI); double s4 = sin(kappa * x(0) + 0.4 * M_PI); double s9 = sin(kappa * x(0) + 0.9 * M_PI); f(0) = 2.2 * s0 + 1.2 * M_SQRT1_2 * s4; f(1) = 1.2 * (2.0 + kappa * kappa) * s4 + M_SQRT1_2 * (1.1 * s0 + 1.3 * s9); f(2) = 1.3 * (2.0 + kappa * kappa) * s9 + 1.2 * M_SQRT1_2 * s4; } else if (dim == 2) { double s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI); double s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI); double s9 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI); f(0) = 0.55 * (4.0 + kappa * kappa) * s0 + 0.6 * (M_SQRT2 - kappa * kappa) * s4; f(1) = 0.55 * (M_SQRT2 - kappa * kappa) * s0 + 0.6 * (4.0 + kappa * kappa) * s4 + 0.65 * M_SQRT2 * s9; f(2) = 0.6 * M_SQRT2 * s4 + 1.3 * (2.0 + kappa * kappa) * s9; } else { double s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI); double c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI); double s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI); double c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI); double s9 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI); double c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI); double sk = sin(kappa * x(2)); double ck = cos(kappa * x(2)); f(0) = 0.55 * (4.0 + 3.0 * kappa * kappa) * s0 * ck + 0.6 * (M_SQRT2 - kappa * kappa) * s4 * ck - 0.65 * M_SQRT2 * kappa * kappa * c9 * sk; f(1) = 0.55 * (M_SQRT2 - kappa * kappa) * s0 * ck + 0.6 * (4.0 + 3.0 * kappa * kappa) * s4 * ck + 0.65 * M_SQRT2 * s9 * ck - 0.65 * M_SQRT2 * kappa * kappa * c9 * sk; f(2) = 0.6 * M_SQRT2 * s4 * ck - M_SQRT2 * kappa * kappa * (0.55 * c0 + 0.6 * c4) * sk + 1.3 * (2.0 + kappa * kappa) * s9 * ck; } }