// MFEM Example 37 // // Compile with: make ex37 // // Sample runs: // ex37 -alpha 10 // ex37 -alpha 10 -pv // ex37 -lambda 0.1 -mu 0.1 // ex37 -o 2 -alpha 5.0 -mi 50 -vf 0.4 -ntol 1e-5 // ex37 -r 6 -o 1 -alpha 25.0 -epsilon 0.02 -mi 50 -ntol 1e-5 // // Description: This example code demonstrates the use of MFEM to solve a // density-filtered [3] topology optimization problem. The // objective is to minimize the compliance // // minimize ∫_Ω f⋅u dx over u ∈ [H¹(Ω)]² and ρ ∈ L¹(Ω) // // subject to // // -Div(r(ρ̃)Cε(u)) = f in Ω + BCs // -ϵ²Δρ̃ + ρ̃ = ρ in Ω + Neumann BCs // 0 ≤ ρ ≤ 1 in Ω // ∫_Ω ρ dx = θ vol(Ω) // // Here, r(ρ̃) = ρ₀ + ρ̃³ (1-ρ₀) is the solid isotropic material // penalization (SIMP) law, C is the elasticity tensor for an // isotropic linearly elastic material, ϵ > 0 is the design // length scale, and 0 < θ < 1 is the volume fraction. // // The problem is discretized and gradients are computing using // finite elements [1]. The design is optimized using an entropic // mirror descent algorithm introduced by Keith and Surowiec [2] // that is tailored to the bound constraint 0 ≤ ρ ≤ 1. // // This example highlights the ability of MFEM to deliver high- // order solutions to inverse design problems and showcases how // to set up and solve PDE-constrained optimization problems // using the so-called reduced space approach. // // [1] Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B. S., & Sigmund, O. // (2011). Efficient topology optimization in MATLAB using 88 lines of // code. Structural and Multidisciplinary Optimization, 43(1), 1-16. // [2] Keith, B. and Surowiec, T. (2023) Proximal Galerkin: A structure- // preserving finite element method for pointwise bound constraints. // arXiv:2307.12444 [math.NA] // [3] Lazarov, B. S., & Sigmund, O. (2011). Filters in topology optimization // based on Helmholtz‐type differential equations. International Journal // for Numerical Methods in Engineering, 86(6), 765-781. #include "mfem.hpp" #include #include #include "ex37.hpp" using namespace std; using namespace mfem; /** * @brief Bregman projection of ρ = sigmoid(ψ) onto the subspace * ∫_Ω ρ dx = θ vol(Ω) as follows: * * 1. Compute the root of the R → R function * f(c) = ∫_Ω sigmoid(ψ + c) dx - θ vol(Ω) * 2. Set ψ ← ψ + c. * * @param psi a GridFunction to be updated * @param target_volume θ vol(Ω) * @param tol Newton iteration tolerance * @param max_its Newton maximum iteration number * @return double Final volume, ∫_Ω sigmoid(ψ) */ double proj(GridFunction &psi, double target_volume, double tol=1e-12, int max_its=10) { MappedGridFunctionCoefficient sigmoid_psi(&psi, sigmoid); MappedGridFunctionCoefficient der_sigmoid_psi(&psi, der_sigmoid); LinearForm int_sigmoid_psi(psi.FESpace()); int_sigmoid_psi.AddDomainIntegrator(new DomainLFIntegrator(sigmoid_psi)); LinearForm int_der_sigmoid_psi(psi.FESpace()); int_der_sigmoid_psi.AddDomainIntegrator(new DomainLFIntegrator( der_sigmoid_psi)); bool done = false; for (int k=0; k 0 is a step size parameter and c ∈ R is a constant ensuring * * ∫_Ω sigmoid(ψ - αG + c) dx = θ vol(Ω). * * end */ int main(int argc, char *argv[]) { // 1. Parse command-line options. int ref_levels = 5; int order = 2; double alpha = 1.0; double epsilon = 0.01; double vol_fraction = 0.5; int max_it = 1e3; double itol = 1e-1; double ntol = 1e-4; double rho_min = 1e-6; double lambda = 1.0; double mu = 1.0; bool glvis_visualization = true; bool paraview_output = false; OptionsParser args(argc, argv); args.AddOption(&ref_levels, "-r", "--refine", "Number of times to refine the mesh uniformly."); args.AddOption(&order, "-o", "--order", "Order (degree) of the finite elements."); args.AddOption(&alpha, "-alpha", "--alpha-step-length", "Step length for gradient descent."); args.AddOption(&epsilon, "-epsilon", "--epsilon-thickness", "Length scale for ρ."); args.AddOption(&max_it, "-mi", "--max-it", "Maximum number of gradient descent iterations."); args.AddOption(&ntol, "-ntol", "--rel-tol", "Normalized exit tolerance."); args.AddOption(&itol, "-itol", "--abs-tol", "Increment exit tolerance."); args.AddOption(&vol_fraction, "-vf", "--volume-fraction", "Volume fraction for the material density."); args.AddOption(&lambda, "-lambda", "--lambda", "Lamé constant λ."); args.AddOption(&mu, "-mu", "--mu", "Lamé constant μ."); args.AddOption(&rho_min, "-rmin", "--psi-min", "Minimum of density coefficient."); args.AddOption(&glvis_visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(¶view_output, "-pv", "--paraview", "-no-pv", "--no-paraview", "Enable or disable ParaView output."); args.Parse(); if (!args.Good()) { args.PrintUsage(mfem::out); return 1; } args.PrintOptions(mfem::out); Mesh mesh = Mesh::MakeCartesian2D(3, 1, mfem::Element::Type::QUADRILATERAL, true, 3.0, 1.0); int dim = mesh.Dimension(); // 2. Set BCs. for (int i = 0; i vertices; be->GetVertices(vertices); double * coords1 = mesh.GetVertex(vertices[0]); double * coords2 = mesh.GetVertex(vertices[1]); Vector center(2); center(0) = 0.5*(coords1[0] + coords2[0]); center(1) = 0.5*(coords1[1] + coords2[1]); if (abs(center(0) - 0.0) < 1e-10) { // the left edge be->SetAttribute(1); } else { // all other boundaries be->SetAttribute(2); } } mesh.SetAttributes(); // 3. Refine the mesh. for (int lev = 0; lev < ref_levels; lev++) { mesh.UniformRefinement(); } // 4. Define the necessary finite element spaces on the mesh. H1_FECollection state_fec(order, dim); // space for u H1_FECollection filter_fec(order, dim); // space for ρ̃ L2_FECollection control_fec(order-1, dim, BasisType::GaussLobatto); // space for ψ FiniteElementSpace state_fes(&mesh, &state_fec,dim); FiniteElementSpace filter_fes(&mesh, &filter_fec); FiniteElementSpace control_fes(&mesh, &control_fec); int state_size = state_fes.GetTrueVSize(); int control_size = control_fes.GetTrueVSize(); int filter_size = filter_fes.GetTrueVSize(); mfem::out << "Number of state unknowns: " << state_size << std::endl; mfem::out << "Number of filter unknowns: " << filter_size << std::endl; mfem::out << "Number of control unknowns: " << control_size << std::endl; // 5. Set the initial guess for ρ. GridFunction u(&state_fes); GridFunction psi(&control_fes); GridFunction psi_old(&control_fes); GridFunction rho_filter(&filter_fes); u = 0.0; rho_filter = vol_fraction; psi = inv_sigmoid(vol_fraction); psi_old = inv_sigmoid(vol_fraction); // ρ = sigmoid(ψ) MappedGridFunctionCoefficient rho(&psi, sigmoid); // Interpolation of ρ = sigmoid(ψ) in control fes (for ParaView output) GridFunction rho_gf(&control_fes); // ρ - ρ_old = sigmoid(ψ) - sigmoid(ψ_old) DiffMappedGridFunctionCoefficient succ_diff_rho(&psi, &psi_old, sigmoid); // 6. Set-up the physics solver. int maxat = mesh.bdr_attributes.Max(); Array ess_bdr(maxat); ess_bdr = 0; ess_bdr[0] = 1; ConstantCoefficient one(1.0); ConstantCoefficient lambda_cf(lambda); ConstantCoefficient mu_cf(mu); LinearElasticitySolver * ElasticitySolver = new LinearElasticitySolver(); ElasticitySolver->SetMesh(&mesh); ElasticitySolver->SetOrder(state_fec.GetOrder()); ElasticitySolver->SetupFEM(); Vector center(2); center(0) = 2.9; center(1) = 0.5; Vector force(2); force(0) = 0.0; force(1) = -1.0; double r = 0.05; VolumeForceCoefficient vforce_cf(r,center,force); ElasticitySolver->SetRHSCoefficient(&vforce_cf); ElasticitySolver->SetEssentialBoundary(ess_bdr); // 7. Set-up the filter solver. ConstantCoefficient eps2_cf(epsilon*epsilon); DiffusionSolver * FilterSolver = new DiffusionSolver(); FilterSolver->SetMesh(&mesh); FilterSolver->SetOrder(filter_fec.GetOrder()); FilterSolver->SetDiffusionCoefficient(&eps2_cf); FilterSolver->SetMassCoefficient(&one); Array ess_bdr_filter; if (mesh.bdr_attributes.Size()) { ess_bdr_filter.SetSize(mesh.bdr_attributes.Max()); ess_bdr_filter = 0; } FilterSolver->SetEssentialBoundary(ess_bdr_filter); FilterSolver->SetupFEM(); BilinearForm mass(&control_fes); mass.AddDomainIntegrator(new InverseIntegrator(new MassIntegrator(one))); mass.Assemble(); SparseMatrix M; Array empty; mass.FormSystemMatrix(empty,M); // 8. Define the Lagrange multiplier and gradient functions. GridFunction grad(&control_fes); GridFunction w_filter(&filter_fes); // 9. Define some tools for later. ConstantCoefficient zero(0.0); GridFunction onegf(&control_fes); onegf = 1.0; GridFunction zerogf(&control_fes); zerogf = 0.0; LinearForm vol_form(&control_fes); vol_form.AddDomainIntegrator(new DomainLFIntegrator(one)); vol_form.Assemble(); double domain_volume = vol_form(onegf); const double target_volume = domain_volume * vol_fraction; // 10. Connect to GLVis. Prepare for VisIt output. char vishost[] = "localhost"; int visport = 19916; socketstream sout_r; if (glvis_visualization) { sout_r.open(vishost, visport); sout_r.precision(8); } mfem::ParaViewDataCollection paraview_dc("ex37", &mesh); if (paraview_output) { rho_gf.ProjectCoefficient(rho); paraview_dc.SetPrefixPath("ParaView"); paraview_dc.SetLevelsOfDetail(order); paraview_dc.SetDataFormat(VTKFormat::BINARY); paraview_dc.SetHighOrderOutput(true); paraview_dc.SetCycle(0); paraview_dc.SetTime(0.0); paraview_dc.RegisterField("displacement",&u); paraview_dc.RegisterField("density",&rho_gf); paraview_dc.RegisterField("filtered_density",&rho_filter); paraview_dc.Save(); } // 11. Iterate: for (int k = 1; k <= max_it; k++) { if (k > 1) { alpha *= ((double) k) / ((double) k-1); } mfem::out << "\nStep = " << k << std::endl; // Step 1 - Filter solve // Solve (ϵ^2 ∇ ρ̃, ∇ v ) + (ρ̃,v) = (ρ,v) FilterSolver->SetRHSCoefficient(&rho); FilterSolver->Solve(); rho_filter = *FilterSolver->GetFEMSolution(); // Step 2 - State solve // Solve (λ r(ρ̃) ∇⋅u, ∇⋅v) + (2 μ r(ρ̃) ε(u), ε(v)) = (f,v) SIMPInterpolationCoefficient SIMP_cf(&rho_filter,rho_min, 1.0); ProductCoefficient lambda_SIMP_cf(lambda_cf,SIMP_cf); ProductCoefficient mu_SIMP_cf(mu_cf,SIMP_cf); ElasticitySolver->SetLameCoefficients(&lambda_SIMP_cf,&mu_SIMP_cf); ElasticitySolver->Solve(); u = *ElasticitySolver->GetFEMSolution(); // Step 3 - Adjoint filter solve // Solve (ϵ² ∇ w̃, ∇ v) + (w̃ ,v) = (-r'(ρ̃) ( λ |∇⋅u|² + 2 μ |ε(u)|²),v) StrainEnergyDensityCoefficient rhs_cf(&lambda_cf,&mu_cf,&u, &rho_filter, rho_min); FilterSolver->SetRHSCoefficient(&rhs_cf); FilterSolver->Solve(); w_filter = *FilterSolver->GetFEMSolution(); // Step 4 - Compute gradient // Solve G = M⁻¹w̃ GridFunctionCoefficient w_cf(&w_filter); LinearForm w_rhs(&control_fes); w_rhs.AddDomainIntegrator(new DomainLFIntegrator(w_cf)); w_rhs.Assemble(); M.Mult(w_rhs,grad); // Step 5 - Update design variable ψ ← proj(ψ - αG) psi.Add(-alpha, grad); const double material_volume = proj(psi, target_volume); // Compute ||ρ - ρ_old|| in control fes. double norm_increment = zerogf.ComputeL1Error(succ_diff_rho); double norm_reduced_gradient = norm_increment/alpha; psi_old = psi; double compliance = (*(ElasticitySolver->GetLinearForm()))(u); mfem::out << "norm of the reduced gradient = " << norm_reduced_gradient << std::endl; mfem::out << "norm of the increment = " << norm_increment << endl; mfem::out << "compliance = " << compliance << std::endl; mfem::out << "volume fraction = " << material_volume / domain_volume << std::endl; if (glvis_visualization) { GridFunction r_gf(&filter_fes); r_gf.ProjectCoefficient(SIMP_cf); sout_r << "solution\n" << mesh << r_gf << "window_title 'Design density r(ρ̃)'" << flush; } if (paraview_output) { rho_gf.ProjectCoefficient(rho); paraview_dc.SetCycle(k); paraview_dc.SetTime((double)k); paraview_dc.Save(); } if (norm_reduced_gradient < ntol && norm_increment < itol) { break; } } delete ElasticitySolver; delete FilterSolver; return 0; }