// MFEM Example 4 // // Compile with: make ex4 // // Sample runs: ex4 -m ../data/square-disc.mesh // ex4 -m ../data/star.mesh // ex4 -m ../data/beam-tet.mesh // ex4 -m ../data/beam-hex.mesh // ex4 -m ../data/beam-hex.mesh -o 2 -pa // ex4 -m ../data/escher.mesh // ex4 -m ../data/fichera.mesh -o 2 -hb // ex4 -m ../data/fichera-q2.vtk // ex4 -m ../data/fichera-q3.mesh -o 2 -sc // ex4 -m ../data/square-disc-nurbs.mesh // ex4 -m ../data/beam-hex-nurbs.mesh // ex4 -m ../data/periodic-square.mesh -no-bc // ex4 -m ../data/periodic-cube.mesh -no-bc // ex4 -m ../data/amr-quad.mesh // ex4 -m ../data/amr-hex.mesh // ex4 -m ../data/amr-hex.mesh -o 2 -hb // ex4 -m ../data/fichera-amr.mesh -o 2 -sc // ex4 -m ../data/ref-prism.mesh -o 1 // ex4 -m ../data/octahedron.mesh -o 1 // ex4 -m ../data/star-surf.mesh -o 1 // // Device sample runs: // ex4 -m ../data/star.mesh -pa -d cuda // ex4 -m ../data/star.mesh -pa -d raja-cuda // ex4 -m ../data/star.mesh -pa -d raja-omp // ex4 -m ../data/beam-hex.mesh -pa -d cuda // // Description: This example code solves a simple 2D/3D H(div) diffusion // problem corresponding to the second order definite equation // -grad(alpha div F) + beta F = f with boundary condition F dot n // = . Here, we use a given exact solution F // and compute the corresponding r.h.s. f. We discretize with // Raviart-Thomas finite elements. // // The example demonstrates the use of H(div) finite element // spaces with the grad-div and H(div) vector finite element mass // bilinear form, as well as the computation of discretization // error when the exact solution is known. Bilinear form // hybridization and static condensation are also illustrated. // // We recommend viewing examples 1-3 before viewing this example. #include "mfem.hpp" #include #include using namespace std; using namespace mfem; // Exact solution, F, and r.h.s., f. See below for implementation. void F_exact(const Vector &, Vector &); void f_exact(const Vector &, Vector &); double freq = 1.0, kappa; int main(int argc, char *argv[]) { // 1. Parse command-line options. const char *mesh_file = "../data/star.mesh"; int order = 1; bool set_bc = true; bool static_cond = false; bool hybridization = false; bool pa = false; const char *device_config = "cpu"; bool visualization = 1; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree)."); args.AddOption(&set_bc, "-bc", "--impose-bc", "-no-bc", "--dont-impose-bc", "Impose or not essential boundary conditions."); args.AddOption(&freq, "-f", "--frequency", "Set the frequency for the exact" " solution."); args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc", "--no-static-condensation", "Enable static condensation."); args.AddOption(&hybridization, "-hb", "--hybridization", "-no-hb", "--no-hybridization", "Enable hybridization."); args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa", "--no-partial-assembly", "Enable Partial Assembly."); args.AddOption(&device_config, "-d", "--device", "Device configuration string, see Device::Configure()."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.Parse(); if (!args.Good()) { args.PrintUsage(cout); return 1; } args.PrintOptions(cout); kappa = freq * M_PI; // 2. Enable hardware devices such as GPUs, and programming models such as // CUDA, OCCA, RAJA and OpenMP based on command line options. Device device(device_config); device.Print(); // 3. Read the mesh from the given mesh file. We can handle triangular, // quadrilateral, tetrahedral, hexahedral, surface and volume, as well as // periodic meshes with the same code. Mesh *mesh = new Mesh(mesh_file, 1, 1); int dim = mesh->Dimension(); int sdim = mesh->SpaceDimension(); // 4. Refine the mesh to increase the resolution. In this example we do // 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the // largest number that gives a final mesh with no more than 25,000 // elements. { int ref_levels = (int)floor(log(25000./mesh->GetNE())/log(2.)/dim); for (int l = 0; l < ref_levels; l++) { mesh->UniformRefinement(); } } // 5. Define a finite element space on the mesh. Here we use the // Raviart-Thomas finite elements of the specified order. FiniteElementCollection *fec = new RT_FECollection(order-1, dim); FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec); cout << "Number of finite element unknowns: " << fespace->GetTrueVSize() << endl; // 6. Determine the list of true (i.e. conforming) essential boundary dofs. // In this example, the boundary conditions are defined by marking all // the boundary attributes from the mesh as essential (Dirichlet) and // converting them to a list of true dofs. Array ess_tdof_list; if (mesh->bdr_attributes.Size()) { Array ess_bdr(mesh->bdr_attributes.Max()); ess_bdr = set_bc ? 1 : 0; fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list); } // 7. Set up the linear form b(.) which corresponds to the right-hand side // of the FEM linear system, which in this case is (f,phi_i) where f is // given by the function f_exact and phi_i are the basis functions in the // finite element fespace. VectorFunctionCoefficient f(sdim, f_exact); LinearForm *b = new LinearForm(fespace); b->AddDomainIntegrator(new VectorFEDomainLFIntegrator(f)); b->Assemble(); // 8. Define the solution vector x as a finite element grid function // corresponding to fespace. Initialize x by projecting the exact // solution. Note that only values from the boundary faces will be used // when eliminating the non-homogeneous boundary condition to modify the // r.h.s. vector b. GridFunction x(fespace); VectorFunctionCoefficient F(sdim, F_exact); x.ProjectCoefficient(F); // 9. Set up the bilinear form corresponding to the H(div) diffusion operator // grad alpha div + beta I, by adding the div-div and the mass domain // integrators. Coefficient *alpha = new ConstantCoefficient(1.0); Coefficient *beta = new ConstantCoefficient(1.0); BilinearForm *a = new BilinearForm(fespace); if (pa) { a->SetAssemblyLevel(AssemblyLevel::PARTIAL); } a->AddDomainIntegrator(new DivDivIntegrator(*alpha)); a->AddDomainIntegrator(new VectorFEMassIntegrator(*beta)); // 10. Assemble the bilinear form and the corresponding linear system, // applying any necessary transformations such as: eliminating boundary // conditions, applying conforming constraints for non-conforming AMR, // static condensation, hybridization, etc. FiniteElementCollection *hfec = NULL; FiniteElementSpace *hfes = NULL; if (static_cond) { a->EnableStaticCondensation(); } else if (hybridization) { hfec = new DG_Interface_FECollection(order-1, dim); hfes = new FiniteElementSpace(mesh, hfec); a->EnableHybridization(hfes, new NormalTraceJumpIntegrator(), ess_tdof_list); } a->Assemble(); OperatorPtr A; Vector B, X; a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B); cout << "Size of linear system: " << A->Height() << endl; // 11. Solve the linear system A X = B. if (!pa) { #ifndef MFEM_USE_SUITESPARSE // Use a simple symmetric Gauss-Seidel preconditioner with PCG. GSSmoother M((SparseMatrix&)(*A)); PCG(*A, M, B, X, 1, 10000, 1e-20, 0.0); #else // If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system. UMFPackSolver umf_solver; umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS; umf_solver.SetOperator(*A); umf_solver.Mult(B, X); #endif } else // Jacobi preconditioning in partial assembly mode { if (UsesTensorBasis(*fespace)) { OperatorJacobiSmoother M(*a, ess_tdof_list); PCG(*A, M, B, X, 1, 10000, 1e-20, 0.0); } else { CG(*A, B, X, 1, 10000, 1e-20, 0.0); } } // 12. Recover the solution as a finite element grid function. a->RecoverFEMSolution(X, *b, x); // 13. Compute and print the L^2 norm of the error. cout << "\n|| F_h - F ||_{L^2} = " << x.ComputeL2Error(F) << '\n' << endl; // 14. Save the refined mesh and the solution. This output can be viewed // later using GLVis: "glvis -m refined.mesh -g sol.gf". { ofstream mesh_ofs("refined.mesh"); mesh_ofs.precision(8); mesh->Print(mesh_ofs); ofstream sol_ofs("sol.gf"); sol_ofs.precision(8); x.Save(sol_ofs); } // 15. Send the solution by socket to a GLVis server. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock.precision(8); sol_sock << "solution\n" << *mesh << x << flush; } // 16. Free the used memory. delete hfes; delete hfec; delete a; delete alpha; delete beta; delete b; delete fespace; delete fec; delete mesh; return 0; } // The exact solution (for non-surface meshes) void F_exact(const Vector &p, Vector &F) { int dim = p.Size(); double x = p(0); double y = p(1); // double z = (dim == 3) ? p(2) : 0.0; // Uncomment if F is changed to depend on z F(0) = cos(kappa*x)*sin(kappa*y); F(1) = cos(kappa*y)*sin(kappa*x); if (dim == 3) { F(2) = 0.0; } } // The right hand side void f_exact(const Vector &p, Vector &f) { int dim = p.Size(); double x = p(0); double y = p(1); // double z = (dim == 3) ? p(2) : 0.0; // Uncomment if f is changed to depend on z double temp = 1 + 2*kappa*kappa; f(0) = temp*cos(kappa*x)*sin(kappa*y); f(1) = temp*cos(kappa*y)*sin(kappa*x); if (dim == 3) { f(2) = 0; } }