// MFEM Example 7 // // Compile with: make ex7 // // Sample runs: ex7 -e 0 -o 2 -r 4 // ex7 -e 1 -o 2 -r 4 -snap // ex7 -e 0 -amr 1 // ex7 -e 1 -amr 2 -o 2 // // Description: This example code demonstrates the use of MFEM to define a // triangulation of a unit sphere and a simple isoparametric // finite element discretization of the Laplace problem with mass // term, -Delta u + u = f. // // The example highlights mesh generation, the use of mesh // refinement, high-order meshes and finite elements, as well as // surface-based linear and bilinear forms corresponding to the // left-hand side and right-hand side of the discrete linear // system. Simple local mesh refinement is also demonstrated. // // We recommend viewing Example 1 before viewing this example. #include "mfem.hpp" #include #include using namespace std; using namespace mfem; // Exact solution and r.h.s., see below for implementation. double analytic_solution(const Vector &x); double analytic_rhs(const Vector &x); void SnapNodes(Mesh &mesh); int main(int argc, char *argv[]) { // 1. Parse command-line options. int elem_type = 1; int ref_levels = 2; int amr = 0; int order = 2; bool always_snap = false; bool visualization = 1; OptionsParser args(argc, argv); args.AddOption(&elem_type, "-e", "--elem", "Type of elements to use: 0 - triangles, 1 - quads."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree)."); args.AddOption(&ref_levels, "-r", "--refine", "Number of times to refine the mesh uniformly."); args.AddOption(&amr, "-amr", "--refine-locally", "Additional local (non-conforming) refinement:" " 1 = refine around north pole, 2 = refine randomly."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(&always_snap, "-snap", "--always-snap", "-no-snap", "--snap-at-the-end", "If true, snap nodes to the sphere initially and after each refinement " "otherwise, snap only after the last refinement"); args.Parse(); if (!args.Good()) { args.PrintUsage(cout); return 1; } args.PrintOptions(cout); // 2. Generate an initial high-order (surface) mesh on the unit sphere. The // Mesh object represents a 2D mesh in 3 spatial dimensions. We first add // the elements and the vertices of the mesh, and then make it high-order // by specifying a finite element space for its nodes. int Nvert = 8, Nelem = 6; if (elem_type == 0) { Nvert = 6; Nelem = 8; } Mesh *mesh = new Mesh(2, Nvert, Nelem, 0, 3); if (elem_type == 0) // inscribed octahedron { const double tri_v[6][3] = { { 1, 0, 0}, { 0, 1, 0}, {-1, 0, 0}, { 0, -1, 0}, { 0, 0, 1}, { 0, 0, -1} }; const int tri_e[8][3] = { {0, 1, 4}, {1, 2, 4}, {2, 3, 4}, {3, 0, 4}, {1, 0, 5}, {2, 1, 5}, {3, 2, 5}, {0, 3, 5} }; for (int j = 0; j < Nvert; j++) { mesh->AddVertex(tri_v[j]); } for (int j = 0; j < Nelem; j++) { int attribute = j + 1; mesh->AddTriangle(tri_e[j], attribute); } mesh->FinalizeTriMesh(1, 1, true); } else // inscribed cube { const double quad_v[8][3] = { {-1, -1, -1}, {+1, -1, -1}, {+1, +1, -1}, {-1, +1, -1}, {-1, -1, +1}, {+1, -1, +1}, {+1, +1, +1}, {-1, +1, +1} }; const int quad_e[6][4] = { {3, 2, 1, 0}, {0, 1, 5, 4}, {1, 2, 6, 5}, {2, 3, 7, 6}, {3, 0, 4, 7}, {4, 5, 6, 7} }; for (int j = 0; j < Nvert; j++) { mesh->AddVertex(quad_v[j]); } for (int j = 0; j < Nelem; j++) { int attribute = j + 1; mesh->AddQuad(quad_e[j], attribute); } mesh->FinalizeQuadMesh(1, 1, true); } // Set the space for the high-order mesh nodes. H1_FECollection fec(order, mesh->Dimension()); FiniteElementSpace nodal_fes(mesh, &fec, mesh->SpaceDimension()); mesh->SetNodalFESpace(&nodal_fes); // 3. Refine the mesh while snapping nodes to the sphere. for (int l = 0; l <= ref_levels; l++) { if (l > 0) // for l == 0 just perform snapping { mesh->UniformRefinement(); } // Snap the nodes of the refined mesh back to sphere surface. if (always_snap || l == ref_levels) { SnapNodes(*mesh); } } if (amr == 1) { Vertex target(0.0, 0.0, 1.0); for (int l = 0; l < 5; l++) { mesh->RefineAtVertex(target); } SnapNodes(*mesh); } else if (amr == 2) { for (int l = 0; l < 4; l++) { mesh->RandomRefinement(0.5); // 50% probability } SnapNodes(*mesh); } // 4. Define a finite element space on the mesh. Here we use isoparametric // finite elements -- the same as the mesh nodes. FiniteElementSpace *fespace = new FiniteElementSpace(mesh, &fec); cout << "Number of unknowns: " << fespace->GetTrueVSize() << endl; // 5. Set up the linear form b(.) which corresponds to the right-hand side of // the FEM linear system, which in this case is (1,phi_i) where phi_i are // the basis functions in the finite element fespace. LinearForm *b = new LinearForm(fespace); ConstantCoefficient one(1.0); FunctionCoefficient rhs_coef (analytic_rhs); FunctionCoefficient sol_coef (analytic_solution); b->AddDomainIntegrator(new DomainLFIntegrator(rhs_coef)); b->Assemble(); // 6. Define the solution vector x as a finite element grid function // corresponding to fespace. Initialize x with initial guess of zero. GridFunction x(fespace); x = 0.0; // 7. Set up the bilinear form a(.,.) on the finite element space // corresponding to the Laplacian operator -Delta, by adding the Diffusion // and Mass domain integrators. BilinearForm *a = new BilinearForm(fespace); a->AddDomainIntegrator(new DiffusionIntegrator(one)); a->AddDomainIntegrator(new MassIntegrator(one)); // 8. Assemble the linear system, apply conforming constraints, etc. a->Assemble(); SparseMatrix A; Vector B, X; Array empty_tdof_list; a->FormLinearSystem(empty_tdof_list, x, *b, A, X, B); #ifndef MFEM_USE_SUITESPARSE // 9. Define a simple symmetric Gauss-Seidel preconditioner and use it to // solve the system AX=B with PCG. GSSmoother M(A); PCG(A, M, B, X, 1, 200, 1e-12, 0.0); #else // 9. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system. UMFPackSolver umf_solver; umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS; umf_solver.SetOperator(A); umf_solver.Mult(B, X); #endif // 10. Recover the solution as a finite element grid function. a->RecoverFEMSolution(X, *b, x); // 11. Compute and print the L^2 norm of the error. cout<<"\nL2 norm of error: " << x.ComputeL2Error(sol_coef) << endl; // 12. Save the refined mesh and the solution. This output can be viewed // later using GLVis: "glvis -m sphere_refined.mesh -g sol.gf". { ofstream mesh_ofs("sphere_refined.mesh"); mesh_ofs.precision(8); mesh->Print(mesh_ofs); ofstream sol_ofs("sol.gf"); sol_ofs.precision(8); x.Save(sol_ofs); } // 13. Send the solution by socket to a GLVis server. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock.precision(8); sol_sock << "solution\n" << *mesh << x << flush; } // 14. Free the used memory. delete a; delete b; delete fespace; delete mesh; return 0; } double analytic_solution(const Vector &x) { double l2 = x(0)*x(0) + x(1)*x(1) + x(2)*x(2); return x(0)*x(1)/l2; } double analytic_rhs(const Vector &x) { double l2 = x(0)*x(0) + x(1)*x(1) + x(2)*x(2); return 7*x(0)*x(1)/l2; } void SnapNodes(Mesh &mesh) { GridFunction &nodes = *mesh.GetNodes(); Vector node(mesh.SpaceDimension()); for (int i = 0; i < nodes.FESpace()->GetNDofs(); i++) { for (int d = 0; d < mesh.SpaceDimension(); d++) { node(d) = nodes(nodes.FESpace()->DofToVDof(i, d)); } node /= node.Norml2(); for (int d = 0; d < mesh.SpaceDimension(); d++) { nodes(nodes.FESpace()->DofToVDof(i, d)) = node(d); } } if (mesh.Nonconforming()) { // Snap hanging nodes to the master side. Vector tnodes; nodes.GetTrueDofs(tnodes); nodes.SetFromTrueDofs(tnodes); } }