// MFEM Example 8 - Parallel Version // // Compile with: make ex8p // // Sample runs: mpirun -np 4 ex8p -m ../data/square-disc.mesh // mpirun -np 4 ex8p -m ../data/star.mesh // mpirun -np 4 ex8p -m ../data/star-mixed.mesh // mpirun -np 4 ex8p -m ../data/escher.mesh // mpirun -np 4 ex8p -m ../data/fichera.mesh // mpirun -np 4 ex8p -m ../data/fichera-mixed.mesh // mpirun -np 4 ex8p -m ../data/square-disc-p2.vtk // mpirun -np 4 ex8p -m ../data/square-disc-p3.mesh // mpirun -np 4 ex8p -m ../data/star-surf.mesh -o 2 // // Description: This example code demonstrates the use of the Discontinuous // Petrov-Galerkin (DPG) method in its primal 2x2 block form as a // simple finite element discretization of the Laplace problem // -Delta u = f with homogeneous Dirichlet boundary conditions. We // use high-order continuous trial space, a high-order interfacial // (trace) space, and a high-order discontinuous test space // defining a local dual (H^{-1}) norm. // // We use the primal form of DPG, see "A primal DPG method without // a first-order reformulation", Demkowicz and Gopalakrishnan, CAM // 2013, DOI:10.1016/j.camwa.2013.06.029. // // The example highlights the use of interfacial (trace) finite // elements and spaces, trace face integrators and the definition // of block operators and preconditioners. The use of the ADS // preconditioner from hypre for interfacially-reduced H(div) // problems is also illustrated. // // We recommend viewing examples 1-5 before viewing this example. #include "mfem.hpp" #include #include using namespace std; using namespace mfem; int main(int argc, char *argv[]) { // 1. Initialize MPI and HYPRE. Mpi::Init(argc, argv); int num_procs = Mpi::WorldSize(); int myid = Mpi::WorldRank(); Hypre::Init(); // 2. Parse command-line options. const char *mesh_file = "../data/star.mesh"; int order = 1; bool visualization = 1; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree)."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.Parse(); if (!args.Good()) { if (myid == 0) { args.PrintUsage(cout); } return 1; } if (myid == 0) { args.PrintOptions(cout); } // 3. Read the (serial) mesh from the given mesh file on all processors. We // can handle triangular, quadrilateral, tetrahedral, hexahedral, surface // and volume meshes with the same code. Mesh *mesh = new Mesh(mesh_file, 1, 1); int dim = mesh->Dimension(); // 4. Refine the serial mesh on all processors to increase the resolution. In // this example we do 'ref_levels' of uniform refinement. We choose // 'ref_levels' to be the largest number that gives a final mesh with no // more than 10,000 elements. { int ref_levels = (int)floor(log(10000./mesh->GetNE())/log(2.)/dim); for (int l = 0; l < ref_levels; l++) { mesh->UniformRefinement(); } } // 5. Define a parallel mesh by a partitioning of the serial mesh. Refine // this mesh further in parallel to increase the resolution. Once the // parallel mesh is defined, the serial mesh can be deleted. ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh); delete mesh; { int par_ref_levels = 1; for (int l = 0; l < par_ref_levels; l++) { pmesh->UniformRefinement(); } } // 6. Define the trial, interfacial (trace) and test DPG spaces: // - The trial space, x0_space, contains the non-interfacial unknowns and // has the essential BC. // - The interfacial space, xhat_space, contains the interfacial unknowns // and does not have essential BC. // - The test space, test_space, is an enriched space where the enrichment // degree may depend on the spatial dimension of the domain, the type of // the mesh and the trial space order. unsigned int trial_order = order; unsigned int trace_order = order - 1; unsigned int test_order = order; /* reduced order, full order is (order + dim - 1) */ if (dim == 2 && (order%2 == 0 || (pmesh->MeshGenerator() & 2 && order > 1))) { test_order++; } if (test_order < trial_order) { if (myid == 0) { cerr << "Warning, test space not enriched enough to handle primal" << " trial space\n"; } } FiniteElementCollection *x0_fec, *xhat_fec, *test_fec; x0_fec = new H1_FECollection(trial_order, dim); xhat_fec = new RT_Trace_FECollection(trace_order, dim); test_fec = new L2_FECollection(test_order, dim); ParFiniteElementSpace *x0_space, *xhat_space, *test_space; x0_space = new ParFiniteElementSpace(pmesh, x0_fec); xhat_space = new ParFiniteElementSpace(pmesh, xhat_fec); test_space = new ParFiniteElementSpace(pmesh, test_fec); HYPRE_BigInt glob_true_s0 = x0_space->GlobalTrueVSize(); HYPRE_BigInt glob_true_s1 = xhat_space->GlobalTrueVSize(); HYPRE_BigInt glob_true_s_test = test_space->GlobalTrueVSize(); if (myid == 0) { cout << "\nNumber of Unknowns:\n" << " Trial space, X0 : " << glob_true_s0 << " (order " << trial_order << ")\n" << " Interface space, Xhat : " << glob_true_s1 << " (order " << trace_order << ")\n" << " Test space, Y : " << glob_true_s_test << " (order " << test_order << ")\n\n"; } // 7. Set up the linear form F(.) which corresponds to the right-hand side of // the FEM linear system, which in this case is (f,phi_i) where f=1.0 and // phi_i are the basis functions in the test finite element fespace. ConstantCoefficient one(1.0); ParLinearForm * F = new ParLinearForm(test_space); F->AddDomainIntegrator(new DomainLFIntegrator(one)); F->Assemble(); ParGridFunction * x0 = new ParGridFunction(x0_space); *x0 = 0.; // 8. Set up the mixed bilinear form for the primal trial unknowns, B0, // the mixed bilinear form for the interfacial unknowns, Bhat, // the inverse stiffness matrix on the discontinuous test space, Sinv, // and the stiffness matrix on the continuous trial space, S0. Array ess_bdr(pmesh->bdr_attributes.Max()); ess_bdr = 1; Array ess_dof; x0_space->GetEssentialVDofs(ess_bdr, ess_dof); ParMixedBilinearForm *B0 = new ParMixedBilinearForm(x0_space,test_space); B0->AddDomainIntegrator(new DiffusionIntegrator(one)); B0->Assemble(); B0->EliminateEssentialBCFromTrialDofs(ess_dof, *x0, *F); B0->Finalize(); ParMixedBilinearForm *Bhat = new ParMixedBilinearForm(xhat_space,test_space); Bhat->AddTraceFaceIntegrator(new TraceJumpIntegrator()); Bhat->Assemble(); Bhat->Finalize(); ParBilinearForm *Sinv = new ParBilinearForm(test_space); SumIntegrator *Sum = new SumIntegrator; Sum->AddIntegrator(new DiffusionIntegrator(one)); Sum->AddIntegrator(new MassIntegrator(one)); Sinv->AddDomainIntegrator(new InverseIntegrator(Sum)); Sinv->Assemble(); Sinv->Finalize(); ParBilinearForm *S0 = new ParBilinearForm(x0_space); S0->AddDomainIntegrator(new DiffusionIntegrator(one)); S0->Assemble(); S0->EliminateEssentialBC(ess_bdr); S0->Finalize(); HypreParMatrix * matB0 = B0->ParallelAssemble(); delete B0; HypreParMatrix * matBhat = Bhat->ParallelAssemble(); delete Bhat; HypreParMatrix * matSinv = Sinv->ParallelAssemble(); delete Sinv; HypreParMatrix * matS0 = S0->ParallelAssemble(); delete S0; // 9. Define the block structure of the problem, by creating the offset // variables. Also allocate two BlockVector objects to store the solution // and rhs. enum {x0_var, xhat_var, NVAR}; int true_s0 = x0_space->TrueVSize(); int true_s1 = xhat_space->TrueVSize(); int true_s_test = test_space->TrueVSize(); Array true_offsets(NVAR+1); true_offsets[0] = 0; true_offsets[1] = true_s0; true_offsets[2] = true_s0+true_s1; Array true_offsets_test(2); true_offsets_test[0] = 0; true_offsets_test[1] = true_s_test; BlockVector x(true_offsets), b(true_offsets); x = 0.0; b = 0.0; // 10. Set up the 1x2 block Least Squares DPG operator, B = [B0 Bhat], // the normal equation operator, A = B^t Sinv B, and // the normal equation right-hand-size, b = B^t Sinv F. BlockOperator B(true_offsets_test, true_offsets); B.SetBlock(0, 0, matB0); B.SetBlock(0, 1, matBhat); RAPOperator A(B, *matSinv, B); HypreParVector *trueF = F->ParallelAssemble(); { HypreParVector SinvF(test_space); matSinv->Mult(*trueF, SinvF); B.MultTranspose(SinvF, b); } // 11. Set up a block-diagonal preconditioner for the 2x2 normal equation // // [ S0^{-1} 0 ] // [ 0 Shat^{-1} ] Shat = (Bhat^T Sinv Bhat) // // corresponding to the primal (x0) and interfacial (xhat) unknowns. // Since the Shat operator is equivalent to an H(div) matrix reduced to // the interfacial skeleton, we approximate its inverse with one V-cycle // of the ADS preconditioner from the hypre library (in 2D we use AMS for // the rotated H(curl) problem). HypreBoomerAMG *S0inv = new HypreBoomerAMG(*matS0); S0inv->SetPrintLevel(0); HypreParMatrix *Shat = RAP(matSinv, matBhat); HypreSolver *Shatinv; if (dim == 2) { Shatinv = new HypreAMS(*Shat, xhat_space); } else { Shatinv = new HypreADS(*Shat, xhat_space); } BlockDiagonalPreconditioner P(true_offsets); P.SetDiagonalBlock(0, S0inv); P.SetDiagonalBlock(1, Shatinv); // 12. Solve the normal equation system using the PCG iterative solver. // Check the weighted norm of residual for the DPG least square problem. // Wrap the primal variable in a GridFunction for visualization purposes. CGSolver pcg(MPI_COMM_WORLD); pcg.SetOperator(A); pcg.SetPreconditioner(P); pcg.SetRelTol(1e-6); pcg.SetMaxIter(200); pcg.SetPrintLevel(1); pcg.Mult(b, x); { HypreParVector LSres(test_space), tmp(test_space); B.Mult(x, LSres); LSres -= *trueF; matSinv->Mult(LSres, tmp); double res = sqrt(InnerProduct(LSres, tmp)); if (myid == 0) { cout << "\n|| B0*x0 + Bhat*xhat - F ||_{S^-1} = " << res << endl; } } x0->Distribute(x.GetBlock(x0_var)); // 13. Save the refined mesh and the solution in parallel. This output can // be viewed later using GLVis: "glvis -np -m mesh -g sol". { ostringstream mesh_name, sol_name; mesh_name << "mesh." << setfill('0') << setw(6) << myid; sol_name << "sol." << setfill('0') << setw(6) << myid; ofstream mesh_ofs(mesh_name.str().c_str()); mesh_ofs.precision(8); pmesh->Print(mesh_ofs); ofstream sol_ofs(sol_name.str().c_str()); sol_ofs.precision(8); x0->Save(sol_ofs); } // 14. Send the solution by socket to a GLVis server. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock << "parallel " << num_procs << " " << myid << "\n"; sol_sock.precision(8); sol_sock << "solution\n" << *pmesh << *x0 << flush; } // 15. Free the used memory. delete trueF; delete Shatinv; delete S0inv; delete Shat; delete matB0; delete matBhat; delete matSinv; delete matS0; delete x0; delete F; delete test_space; delete xhat_space; delete x0_space; delete test_fec; delete xhat_fec; delete x0_fec; delete pmesh; return 0; }