// MFEM Example 9 // // Compile with: make ex9 // // Sample runs: // ex9 -m ../data/periodic-segment.mesh -p 0 -r 2 -dt 0.005 // ex9 -m ../data/periodic-square.mesh -p 0 -r 2 -dt 0.01 -tf 10 // ex9 -m ../data/periodic-hexagon.mesh -p 0 -r 2 -dt 0.01 -tf 10 // ex9 -m ../data/periodic-square.mesh -p 1 -r 2 -dt 0.005 -tf 9 // ex9 -m ../data/periodic-hexagon.mesh -p 1 -r 2 -dt 0.005 -tf 9 // ex9 -m ../data/amr-quad.mesh -p 1 -r 2 -dt 0.002 -tf 9 // ex9 -m ../data/amr-quad.mesh -p 1 -r 2 -dt 0.02 -s 13 -tf 9 // ex9 -m ../data/star-q3.mesh -p 1 -r 2 -dt 0.005 -tf 9 // ex9 -m ../data/star-mixed.mesh -p 1 -r 2 -dt 0.005 -tf 9 // ex9 -m ../data/disc-nurbs.mesh -p 1 -r 3 -dt 0.005 -tf 9 // ex9 -m ../data/disc-nurbs.mesh -p 2 -r 3 -dt 0.005 -tf 9 // ex9 -m ../data/periodic-square.mesh -p 3 -r 4 -dt 0.0025 -tf 9 -vs 20 // ex9 -m ../data/periodic-cube.mesh -p 0 -r 2 -o 2 -dt 0.02 -tf 8 // ex9 -m ../data/periodic-square.msh -p 0 -r 2 -dt 0.005 -tf 2 // ex9 -m ../data/periodic-cube.msh -p 0 -r 1 -o 2 -tf 2 // // Device sample runs: // ex9 -pa // ex9 -ea // ex9 -fa // ex9 -pa -m ../data/periodic-cube.mesh // ex9 -pa -m ../data/periodic-cube.mesh -d cuda // ex9 -ea -m ../data/periodic-cube.mesh -d cuda // ex9 -fa -m ../data/periodic-cube.mesh -d cuda // ex9 -pa -m ../data/amr-quad.mesh -p 1 -r 2 -dt 0.002 -tf 9 -d cuda // // Description: This example code solves the time-dependent advection equation // du/dt + v.grad(u) = 0, where v is a given fluid velocity, and // u0(x)=u(0,x) is a given initial condition. // // The example demonstrates the use of Discontinuous Galerkin (DG) // bilinear forms in MFEM (face integrators), the use of implicit // and explicit ODE time integrators, the definition of periodic // boundary conditions through periodic meshes, as well as the use // of GLVis for persistent visualization of a time-evolving // solution. The saving of time-dependent data files for external // visualization with VisIt (visit.llnl.gov) and ParaView // (paraview.org) is also illustrated. #include "mfem.hpp" #include #include #include using namespace std; using namespace mfem; // Choice for the problem setup. The fluid velocity, initial condition and // inflow boundary condition are chosen based on this parameter. int problem; // Velocity coefficient void velocity_function(const Vector &x, Vector &v); // Initial condition double u0_function(const Vector &x); // Inflow boundary condition double inflow_function(const Vector &x); // Mesh bounding box Vector bb_min, bb_max; class DG_Solver : public Solver { private: SparseMatrix &M, &K, A; GMRESSolver linear_solver; BlockILU prec; double dt; public: DG_Solver(SparseMatrix &M_, SparseMatrix &K_, const FiniteElementSpace &fes) : M(M_), K(K_), prec(fes.GetFE(0)->GetDof(), BlockILU::Reordering::MINIMUM_DISCARDED_FILL), dt(-1.0) { linear_solver.iterative_mode = false; linear_solver.SetRelTol(1e-9); linear_solver.SetAbsTol(0.0); linear_solver.SetMaxIter(100); linear_solver.SetPrintLevel(0); linear_solver.SetPreconditioner(prec); } void SetTimeStep(double dt_) { if (dt_ != dt) { dt = dt_; // Form operator A = M - dt*K A = K; A *= -dt; A += M; // this will also call SetOperator on the preconditioner linear_solver.SetOperator(A); } } void SetOperator(const Operator &op) { linear_solver.SetOperator(op); } virtual void Mult(const Vector &x, Vector &y) const { linear_solver.Mult(x, y); } }; /** A time-dependent operator for the right-hand side of the ODE. The DG weak form of du/dt = -v.grad(u) is M du/dt = K u + b, where M and K are the mass and advection matrices, and b describes the flow on the boundary. This can be written as a general ODE, du/dt = M^{-1} (K u + b), and this class is used to evaluate the right-hand side. */ class FE_Evolution : public TimeDependentOperator { private: BilinearForm &M, &K; const Vector &b; Solver *M_prec; CGSolver M_solver; DG_Solver *dg_solver; mutable Vector z; public: FE_Evolution(BilinearForm &M_, BilinearForm &K_, const Vector &b_); virtual void Mult(const Vector &x, Vector &y) const; virtual void ImplicitSolve(const double dt, const Vector &x, Vector &k); virtual ~FE_Evolution(); }; int main(int argc, char *argv[]) { // 1. Parse command-line options. problem = 0; const char *mesh_file = "../data/periodic-hexagon.mesh"; int ref_levels = 2; int order = 3; bool pa = false; bool ea = false; bool fa = false; const char *device_config = "cpu"; int ode_solver_type = 4; double t_final = 10.0; double dt = 0.01; bool visualization = true; bool visit = false; bool paraview = false; bool binary = false; int vis_steps = 5; int precision = 8; cout.precision(precision); OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&problem, "-p", "--problem", "Problem setup to use. See options in velocity_function()."); args.AddOption(&ref_levels, "-r", "--refine", "Number of times to refine the mesh uniformly."); args.AddOption(&order, "-o", "--order", "Order (degree) of the finite elements."); args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa", "--no-partial-assembly", "Enable Partial Assembly."); args.AddOption(&ea, "-ea", "--element-assembly", "-no-ea", "--no-element-assembly", "Enable Element Assembly."); args.AddOption(&fa, "-fa", "--full-assembly", "-no-fa", "--no-full-assembly", "Enable Full Assembly."); args.AddOption(&device_config, "-d", "--device", "Device configuration string, see Device::Configure()."); args.AddOption(&ode_solver_type, "-s", "--ode-solver", "ODE solver: 1 - Forward Euler,\n\t" " 2 - RK2 SSP, 3 - RK3 SSP, 4 - RK4, 6 - RK6,\n\t" " 11 - Backward Euler,\n\t" " 12 - SDIRK23 (L-stable), 13 - SDIRK33,\n\t" " 22 - Implicit Midpoint Method,\n\t" " 23 - SDIRK23 (A-stable), 24 - SDIRK34"); args.AddOption(&t_final, "-tf", "--t-final", "Final time; start time is 0."); args.AddOption(&dt, "-dt", "--time-step", "Time step."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit", "--no-visit-datafiles", "Save data files for VisIt (visit.llnl.gov) visualization."); args.AddOption(¶view, "-paraview", "--paraview-datafiles", "-no-paraview", "--no-paraview-datafiles", "Save data files for ParaView (paraview.org) visualization."); args.AddOption(&binary, "-binary", "--binary-datafiles", "-ascii", "--ascii-datafiles", "Use binary (Sidre) or ascii format for VisIt data files."); args.AddOption(&vis_steps, "-vs", "--visualization-steps", "Visualize every n-th timestep."); args.Parse(); if (!args.Good()) { args.PrintUsage(cout); return 1; } args.PrintOptions(cout); Device device(device_config); device.Print(); // 2. Read the mesh from the given mesh file. We can handle geometrically // periodic meshes in this code. Mesh mesh(mesh_file, 1, 1); int dim = mesh.Dimension(); // 3. Define the ODE solver used for time integration. Several explicit // Runge-Kutta methods are available. ODESolver *ode_solver = NULL; switch (ode_solver_type) { // Explicit methods case 1: ode_solver = new ForwardEulerSolver; break; case 2: ode_solver = new RK2Solver(1.0); break; case 3: ode_solver = new RK3SSPSolver; break; case 4: ode_solver = new RK4Solver; break; case 6: ode_solver = new RK6Solver; break; // Implicit (L-stable) methods case 11: ode_solver = new BackwardEulerSolver; break; case 12: ode_solver = new SDIRK23Solver(2); break; case 13: ode_solver = new SDIRK33Solver; break; // Implicit A-stable methods (not L-stable) case 22: ode_solver = new ImplicitMidpointSolver; break; case 23: ode_solver = new SDIRK23Solver; break; case 24: ode_solver = new SDIRK34Solver; break; default: cout << "Unknown ODE solver type: " << ode_solver_type << '\n'; return 3; } // 4. Refine the mesh to increase the resolution. In this example we do // 'ref_levels' of uniform refinement, where 'ref_levels' is a // command-line parameter. If the mesh is of NURBS type, we convert it to // a (piecewise-polynomial) high-order mesh. for (int lev = 0; lev < ref_levels; lev++) { mesh.UniformRefinement(); } if (mesh.NURBSext) { mesh.SetCurvature(max(order, 1)); } mesh.GetBoundingBox(bb_min, bb_max, max(order, 1)); // 5. Define the discontinuous DG finite element space of the given // polynomial order on the refined mesh. DG_FECollection fec(order, dim, BasisType::GaussLobatto); FiniteElementSpace fes(&mesh, &fec); cout << "Number of unknowns: " << fes.GetVSize() << endl; // 6. Set up and assemble the bilinear and linear forms corresponding to the // DG discretization. The DGTraceIntegrator involves integrals over mesh // interior faces. VectorFunctionCoefficient velocity(dim, velocity_function); FunctionCoefficient inflow(inflow_function); FunctionCoefficient u0(u0_function); BilinearForm m(&fes); BilinearForm k(&fes); if (pa) { m.SetAssemblyLevel(AssemblyLevel::PARTIAL); k.SetAssemblyLevel(AssemblyLevel::PARTIAL); } else if (ea) { m.SetAssemblyLevel(AssemblyLevel::ELEMENT); k.SetAssemblyLevel(AssemblyLevel::ELEMENT); } else if (fa) { m.SetAssemblyLevel(AssemblyLevel::FULL); k.SetAssemblyLevel(AssemblyLevel::FULL); } m.AddDomainIntegrator(new MassIntegrator); constexpr double alpha = -1.0; k.AddDomainIntegrator(new ConvectionIntegrator(velocity, alpha)); k.AddInteriorFaceIntegrator( new NonconservativeDGTraceIntegrator(velocity, alpha)); k.AddBdrFaceIntegrator( new NonconservativeDGTraceIntegrator(velocity, alpha)); LinearForm b(&fes); b.AddBdrFaceIntegrator( new BoundaryFlowIntegrator(inflow, velocity, alpha)); m.Assemble(); int skip_zeros = 0; k.Assemble(skip_zeros); b.Assemble(); m.Finalize(); k.Finalize(skip_zeros); // 7. Define the initial conditions, save the corresponding grid function to // a file and (optionally) save data in the VisIt format and initialize // GLVis visualization. GridFunction u(&fes); u.ProjectCoefficient(u0); { ofstream omesh("ex9.mesh"); omesh.precision(precision); mesh.Print(omesh); ofstream osol("ex9-init.gf"); osol.precision(precision); u.Save(osol); } // Create data collection for solution output: either VisItDataCollection for // ascii data files, or SidreDataCollection for binary data files. DataCollection *dc = NULL; if (visit) { if (binary) { #ifdef MFEM_USE_SIDRE dc = new SidreDataCollection("Example9", &mesh); #else MFEM_ABORT("Must build with MFEM_USE_SIDRE=YES for binary output."); #endif } else { dc = new VisItDataCollection("Example9", &mesh); dc->SetPrecision(precision); } dc->RegisterField("solution", &u); dc->SetCycle(0); dc->SetTime(0.0); dc->Save(); } ParaViewDataCollection *pd = NULL; if (paraview) { pd = new ParaViewDataCollection("Example9", &mesh); pd->SetPrefixPath("ParaView"); pd->RegisterField("solution", &u); pd->SetLevelsOfDetail(order); pd->SetDataFormat(VTKFormat::BINARY); pd->SetHighOrderOutput(true); pd->SetCycle(0); pd->SetTime(0.0); pd->Save(); } socketstream sout; if (visualization) { char vishost[] = "localhost"; int visport = 19916; sout.open(vishost, visport); if (!sout) { cout << "Unable to connect to GLVis server at " << vishost << ':' << visport << endl; visualization = false; cout << "GLVis visualization disabled.\n"; } else { sout.precision(precision); sout << "solution\n" << mesh << u; sout << "pause\n"; sout << flush; cout << "GLVis visualization paused." << " Press space (in the GLVis window) to resume it.\n"; } } // 8. Define the time-dependent evolution operator describing the ODE // right-hand side, and perform time-integration (looping over the time // iterations, ti, with a time-step dt). FE_Evolution adv(m, k, b); double t = 0.0; adv.SetTime(t); ode_solver->Init(adv); bool done = false; for (int ti = 0; !done; ) { double dt_real = min(dt, t_final - t); ode_solver->Step(u, t, dt_real); ti++; done = (t >= t_final - 1e-8*dt); if (done || ti % vis_steps == 0) { cout << "time step: " << ti << ", time: " << t << endl; if (visualization) { sout << "solution\n" << mesh << u << flush; } if (visit) { dc->SetCycle(ti); dc->SetTime(t); dc->Save(); } if (paraview) { pd->SetCycle(ti); pd->SetTime(t); pd->Save(); } } } // 9. Save the final solution. This output can be viewed later using GLVis: // "glvis -m ex9.mesh -g ex9-final.gf". { ofstream osol("ex9-final.gf"); osol.precision(precision); u.Save(osol); } // 10. Free the used memory. delete ode_solver; delete pd; delete dc; return 0; } // Implementation of class FE_Evolution FE_Evolution::FE_Evolution(BilinearForm &M_, BilinearForm &K_, const Vector &b_) : TimeDependentOperator(M_.Height()), M(M_), K(K_), b(b_), z(M_.Height()) { Array ess_tdof_list; if (M.GetAssemblyLevel() == AssemblyLevel::LEGACY) { M_prec = new DSmoother(M.SpMat()); M_solver.SetOperator(M.SpMat()); dg_solver = new DG_Solver(M.SpMat(), K.SpMat(), *M.FESpace()); } else { M_prec = new OperatorJacobiSmoother(M, ess_tdof_list); M_solver.SetOperator(M); dg_solver = NULL; } M_solver.SetPreconditioner(*M_prec); M_solver.iterative_mode = false; M_solver.SetRelTol(1e-9); M_solver.SetAbsTol(0.0); M_solver.SetMaxIter(100); M_solver.SetPrintLevel(0); } void FE_Evolution::Mult(const Vector &x, Vector &y) const { // y = M^{-1} (K x + b) K.Mult(x, z); z += b; M_solver.Mult(z, y); } void FE_Evolution::ImplicitSolve(const double dt, const Vector &x, Vector &k) { MFEM_VERIFY(dg_solver != NULL, "Implicit time integration is not supported with partial assembly"); K.Mult(x, z); z += b; dg_solver->SetTimeStep(dt); dg_solver->Mult(z, k); } FE_Evolution::~FE_Evolution() { delete M_prec; delete dg_solver; } // Velocity coefficient void velocity_function(const Vector &x, Vector &v) { int dim = x.Size(); // map to the reference [-1,1] domain Vector X(dim); for (int i = 0; i < dim; i++) { double center = (bb_min[i] + bb_max[i]) * 0.5; X(i) = 2 * (x(i) - center) / (bb_max[i] - bb_min[i]); } switch (problem) { case 0: { // Translations in 1D, 2D, and 3D switch (dim) { case 1: v(0) = 1.0; break; case 2: v(0) = sqrt(2./3.); v(1) = sqrt(1./3.); break; case 3: v(0) = sqrt(3./6.); v(1) = sqrt(2./6.); v(2) = sqrt(1./6.); break; } break; } case 1: case 2: { // Clockwise rotation in 2D around the origin const double w = M_PI/2; switch (dim) { case 1: v(0) = 1.0; break; case 2: v(0) = w*X(1); v(1) = -w*X(0); break; case 3: v(0) = w*X(1); v(1) = -w*X(0); v(2) = 0.0; break; } break; } case 3: { // Clockwise twisting rotation in 2D around the origin const double w = M_PI/2; double d = max((X(0)+1.)*(1.-X(0)),0.) * max((X(1)+1.)*(1.-X(1)),0.); d = d*d; switch (dim) { case 1: v(0) = 1.0; break; case 2: v(0) = d*w*X(1); v(1) = -d*w*X(0); break; case 3: v(0) = d*w*X(1); v(1) = -d*w*X(0); v(2) = 0.0; break; } break; } } } // Initial condition double u0_function(const Vector &x) { int dim = x.Size(); // map to the reference [-1,1] domain Vector X(dim); for (int i = 0; i < dim; i++) { double center = (bb_min[i] + bb_max[i]) * 0.5; X(i) = 2 * (x(i) - center) / (bb_max[i] - bb_min[i]); } switch (problem) { case 0: case 1: { switch (dim) { case 1: return exp(-40.*pow(X(0)-0.5,2)); case 2: case 3: { double rx = 0.45, ry = 0.25, cx = 0., cy = -0.2, w = 10.; if (dim == 3) { const double s = (1. + 0.25*cos(2*M_PI*X(2))); rx *= s; ry *= s; } return ( erfc(w*(X(0)-cx-rx))*erfc(-w*(X(0)-cx+rx)) * erfc(w*(X(1)-cy-ry))*erfc(-w*(X(1)-cy+ry)) )/16; } } } case 2: { double x_ = X(0), y_ = X(1), rho, phi; rho = hypot(x_, y_); phi = atan2(y_, x_); return pow(sin(M_PI*rho),2)*sin(3*phi); } case 3: { const double f = M_PI; return sin(f*X(0))*sin(f*X(1)); } } return 0.0; } // Inflow boundary condition (zero for the problems considered in this example) double inflow_function(const Vector &x) { switch (problem) { case 0: case 1: case 2: case 3: return 0.0; } return 0.0; }