// MFEM Example 1 - Parallel Version // PETSc Modification // // Compile with: make ex1p // // Sample runs: mpirun -np 4 ex1p -m ../../data/amr-quad.mesh // mpirun -np 4 ex1p -m ../../data/amr-quad.mesh --petscopts rc_ex1p // // Device sample runs: // mpirun -np 4 ex1p -pa -d cuda --petscopts rc_ex1p_device // // Description: This example code demonstrates the use of MFEM to define a // simple finite element discretization of the Laplace problem // -Delta u = 1 with homogeneous Dirichlet boundary conditions. // Specifically, we discretize using a FE space of the specified // order, or if order < 1 using an isoparametric/isogeometric // space (i.e. quadratic for quadratic curvilinear mesh, NURBS for // NURBS mesh, etc.) // // The example highlights the use of mesh refinement, finite // element grid functions, as well as linear and bilinear forms // corresponding to the left-hand side and right-hand side of the // discrete linear system. We also cover the explicit elimination // of essential boundary conditions, static condensation, and the // optional connection to the GLVis tool for visualization. // The example also shows how PETSc Krylov solvers can be used by // wrapping a HypreParMatrix (or not) and a Solver, together with // customization using an options file (see rc_ex1p) We also // provide an example on how to visualize the iterative solution // inside a PETSc solver. #include "mfem.hpp" #include #include #ifndef MFEM_USE_PETSC #error This example requires that MFEM is built with MFEM_USE_PETSC=YES #endif using namespace std; using namespace mfem; class UserMonitor : public PetscSolverMonitor { private: ParBilinearForm *a; ParLinearForm *b; public: UserMonitor(ParBilinearForm *a_, ParLinearForm *b_) : PetscSolverMonitor(true,false), a(a_), b(b_) {} void MonitorSolution(PetscInt it, PetscReal norm, const Vector &X) { // we plot the first 5 iterates if (!it || it > 5) { return; } ParFiniteElementSpace *fespace = a->ParFESpace(); ParMesh *mesh = fespace->GetParMesh(); ParGridFunction x(fespace); a->RecoverFEMSolution(X, *b, x); char vishost[] = "localhost"; int visport = 19916; int num_procs, myid; MPI_Comm_size(mesh->GetComm(),&num_procs); MPI_Comm_rank(mesh->GetComm(),&myid); socketstream sol_sock(vishost, visport); sol_sock << "parallel " << num_procs << " " << myid << "\n"; sol_sock.precision(8); sol_sock << "solution\n" << *mesh << x << "window_title 'Iteration no " << it << "'" << flush; } }; int main(int argc, char *argv[]) { // 1. Initialize MPI and HYPRE. Mpi::Init(argc, argv); int num_procs = Mpi::WorldSize(); int myid = Mpi::WorldRank(); Hypre::Init(); // 2. Parse command-line options. const char *mesh_file = "../../data/star.mesh"; int order = 1; bool static_cond = false; bool pa = false; bool visualization = false; const char *device_config = "cpu"; bool use_petsc = true; const char *petscrc_file = ""; bool petscmonitor = false; bool forcewrap = false; bool useh2 = false; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree) or -1 for" " isoparametric space."); args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc", "--no-static-condensation", "Enable static condensation."); args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa", "--no-partial-assembly", "Enable Partial Assembly."); args.AddOption(&device_config, "-d", "--device", "Device configuration string, see Device::Configure()."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(&use_petsc, "-usepetsc", "--usepetsc", "-no-petsc", "--no-petsc", "Use or not PETSc to solve the linear system."); args.AddOption(&petscrc_file, "-petscopts", "--petscopts", "PetscOptions file to use."); args.AddOption(&petscmonitor, "-petscmonitor", "--petscmonitor", "-no-petscmonitor", "--no-petscmonitor", "Enable or disable GLVis visualization of residual."); args.AddOption(&forcewrap, "-forcewrap", "--forcewrap", "-noforce-wrap", "--noforce-wrap", "Force matrix-free."); args.AddOption(&useh2, "-useh2", "--useh2", "-no-h2", "--no-h2", "Use or not the H2 matrix solver."); args.Parse(); if (!args.Good()) { if (myid == 0) { args.PrintUsage(cout); } return 1; } if (myid == 0) { args.PrintOptions(cout); } // 3. Enable hardware devices such as GPUs, and programming models such as // CUDA, OCCA, RAJA and OpenMP based on command line options. Device device(device_config); if (myid == 0) { device.Print(); } // 3b. We initialize PETSc MFEMInitializePetsc(NULL,NULL,petscrc_file,NULL); // 4. Read the (serial) mesh from the given mesh file on all processors. We // can handle triangular, quadrilateral, tetrahedral, hexahedral, surface // and volume meshes with the same code. Mesh *mesh = new Mesh(mesh_file, 1, 1); int dim = mesh->Dimension(); // 5. Refine the serial mesh on all processors to increase the resolution. In // this example we do 'ref_levels' of uniform refinement. We choose // 'ref_levels' to be the largest number that gives a final mesh with no // more than 10,000 elements. { int ref_levels = (int)floor(log(10000./mesh->GetNE())/log(2.)/dim); for (int l = 0; l < ref_levels; l++) { mesh->UniformRefinement(); } } // 6. Define a parallel mesh by a partitioning of the serial mesh. Refine // this mesh further in parallel to increase the resolution. Once the // parallel mesh is defined, the serial mesh can be deleted. ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh); delete mesh; { int par_ref_levels = 2; for (int l = 0; l < par_ref_levels; l++) { pmesh->UniformRefinement(); } } // 7. Define a parallel finite element space on the parallel mesh. Here we // use continuous Lagrange finite elements of the specified order. If // order < 1, we instead use an isoparametric/isogeometric space. FiniteElementCollection *fec; bool delete_fec; if (order > 0) { fec = new H1_FECollection(order, dim); delete_fec = true; } else if (pmesh->GetNodes()) { fec = pmesh->GetNodes()->OwnFEC(); delete_fec = false; if (myid == 0) { cout << "Using isoparametric FEs: " << fec->Name() << endl; } } else { fec = new H1_FECollection(order = 1, dim); delete_fec = true; } ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec); HYPRE_BigInt size = fespace->GlobalTrueVSize(); if (myid == 0) { cout << "Number of finite element unknowns: " << size << endl; } // 8. Determine the list of true (i.e. parallel conforming) essential // boundary dofs. In this example, the boundary conditions are defined // by marking all the boundary attributes from the mesh as essential // (Dirichlet) and converting them to a list of true dofs. Array ess_tdof_list; if (pmesh->bdr_attributes.Size()) { Array ess_bdr(pmesh->bdr_attributes.Max()); ess_bdr = 1; fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list); } // 9. Set up the parallel linear form b(.) which corresponds to the // right-hand side of the FEM linear system, which in this case is // (1,phi_i) where phi_i are the basis functions in fespace. ParLinearForm *b = new ParLinearForm(fespace); ConstantCoefficient one(1.0); b->AddDomainIntegrator(new DomainLFIntegrator(one)); b->Assemble(); // 10. Define the solution vector x as a parallel finite element grid function // corresponding to fespace. Initialize x with initial guess of zero, // which satisfies the boundary conditions. ParGridFunction x(fespace); x = 0.0; // 11. Set up the parallel bilinear form a(.,.) on the finite element space // corresponding to the Laplacian operator -Delta, by adding the Diffusion // domain integrator. ParBilinearForm *a = new ParBilinearForm(fespace); if (pa) { a->SetAssemblyLevel(AssemblyLevel::PARTIAL); } a->AddDomainIntegrator(new DiffusionIntegrator(one)); // 12. Assemble the parallel bilinear form and the corresponding linear // system, applying any necessary transformations such as: parallel // assembly, eliminating boundary conditions, applying conforming // constraints for non-conforming AMR, static condensation, etc. if (static_cond) { a->EnableStaticCondensation(); } a->Assemble(); OperatorPtr A; Vector B, X; a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B); // 13. Solve the linear system A X = B. // If using MFEM with HYPRE // * With full assembly, use the BoomerAMG preconditioner from hypre. // * With partial assembly, use Jacobi smoothing, for now. // If using MFEM with PETSc // * With full assembly, use command line options or H2 matrix solver // * With partial assembly, wrap Jacobi smoothing, for now. Solver *prec = NULL; if (pa) { if (UsesTensorBasis(*fespace)) { prec = new OperatorJacobiSmoother(*a, ess_tdof_list); } } else { prec = new HypreBoomerAMG; } if (!use_petsc) { CGSolver *pcg = new CGSolver(MPI_COMM_WORLD); if (prec) { pcg->SetPreconditioner(*prec); } pcg->SetOperator(*A); pcg->SetRelTol(1e-12); pcg->SetMaxIter(200); pcg->SetPrintLevel(1); pcg->Mult(B, X); delete pcg; } else { PetscPCGSolver *pcg; // If petscrc_file has been given, we convert the HypreParMatrix to a // PetscParMatrix; the user can then experiment with PETSc command line // options unless forcewrap is true. bool wrap = forcewrap ? true : (pa ? true : !strlen(petscrc_file)); if (wrap) { pcg = new PetscPCGSolver(MPI_COMM_WORLD); pcg->SetOperator(*A); if (useh2) { delete prec; prec = new PetscH2Solver(*A.Ptr(),fespace); } else if (!pa) // We need to pass the preconditioner constructed from the HypreParMatrix { delete prec; HypreParMatrix *hA = A.As(); prec = new HypreBoomerAMG(*hA); } if (prec) { pcg->SetPreconditioner(*prec); } } else // Not wrapping, pass the HypreParMatrix so that users can experiment with command line { HypreParMatrix *hA = A.As(); pcg = new PetscPCGSolver(*hA, false); if (useh2) { delete prec; prec = new PetscH2Solver(*hA,fespace); } } pcg->iterative_mode = true; // iterative_mode is true by default with CGSolver pcg->SetRelTol(1e-12); pcg->SetAbsTol(1e-12); pcg->SetMaxIter(200); pcg->SetPrintLevel(1); UserMonitor mymon(a,b); if (visualization && petscmonitor) { pcg->SetMonitor(&mymon); pcg->iterative_mode = true; X.Randomize(); } pcg->Mult(B, X); delete pcg; } // 14. Recover the parallel grid function corresponding to X. This is the // local finite element solution on each processor. a->RecoverFEMSolution(X, *b, x); // 15. Save the refined mesh and the solution in parallel. This output can // be viewed later using GLVis: "glvis -np -m mesh -g sol". { ostringstream mesh_name, sol_name; mesh_name << "mesh." << setfill('0') << setw(6) << myid; sol_name << "sol." << setfill('0') << setw(6) << myid; ofstream mesh_ofs(mesh_name.str().c_str()); mesh_ofs.precision(8); pmesh->Print(mesh_ofs); ofstream sol_ofs(sol_name.str().c_str()); sol_ofs.precision(8); x.Save(sol_ofs); } // 16. Send the solution by socket to a GLVis server. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock << "parallel " << num_procs << " " << myid << "\n"; sol_sock.precision(8); sol_sock << "solution\n" << *pmesh << x << flush; } // 17. Free the used memory. if (delete_fec) { delete fec; } delete a; delete b; delete fespace; delete pmesh; delete prec; // We finalize PETSc MFEMFinalizePetsc(); return 0; }