// MFEM Example 3 - Parallel Version // PETSc Modification // // Compile with: make ex3p // // Sample runs: // mpirun -np 4 ex3p -m ../../data/klein-bottle.mesh -o 2 -f 0.1 --petscopts rc_ex3p // mpirun -np 4 ex3p -m ../../data/klein-bottle.mesh -o 2 -f 0.1 --petscopts rc_ex3p_bddc --nonoverlapping // // Description: This example code solves a simple electromagnetic diffusion // problem corresponding to the second order definite Maxwell // equation curl curl E + E = f with boundary condition // E x n = . Here, we use a given exact // solution E and compute the corresponding r.h.s. f. // We discretize with Nedelec finite elements in 2D or 3D. // // The example demonstrates the use of H(curl) finite element // spaces with the curl-curl and the (vector finite element) mass // bilinear form, as well as the computation of discretization // error when the exact solution is known. Static condensation is // also illustrated. // // The example also show how to use the non-overlapping feature of // the ParBilinearForm class to obtain the linear operator in // a format suitable for the BDDC preconditioner in PETSc. // // We recommend viewing examples 1-2 before viewing this example. #include "mfem.hpp" #include #include #ifndef MFEM_USE_PETSC #error This example requires that MFEM is built with MFEM_USE_PETSC=YES #endif using namespace std; using namespace mfem; // Exact solution, E, and r.h.s., f. See below for implementation. void E_exact(const Vector &, Vector &); void f_exact(const Vector &, Vector &); double freq = 1.0, kappa; int dim; int main(int argc, char *argv[]) { // 1. Initialize MPI and HYPRE. Mpi::Init(argc, argv); int num_procs = Mpi::WorldSize(); int myid = Mpi::WorldRank(); Hypre::Init(); // 2. Parse command-line options. const char *mesh_file = "../../data/beam-tet.mesh"; int order = 1; bool static_cond = false; bool visualization = 1; bool use_petsc = true; const char *petscrc_file = ""; bool use_nonoverlapping = false; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree)."); args.AddOption(&freq, "-f", "--frequency", "Set the frequency for the exact" " solution."); args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc", "--no-static-condensation", "Enable static condensation."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(&use_petsc, "-usepetsc", "--usepetsc", "-no-petsc", "--no-petsc", "Use or not PETSc to solve the linear system."); args.AddOption(&petscrc_file, "-petscopts", "--petscopts", "PetscOptions file to use."); args.AddOption(&use_nonoverlapping, "-nonoverlapping", "--nonoverlapping", "-no-nonoverlapping", "--no-nonoverlapping", "Use or not the block diagonal PETSc's matrix format " "for non-overlapping domain decomposition."); args.Parse(); if (!args.Good()) { if (myid == 0) { args.PrintUsage(cout); } return 1; } if (myid == 0) { args.PrintOptions(cout); } // 2b. We initialize PETSc if (use_petsc) { MFEMInitializePetsc(NULL,NULL,petscrc_file,NULL); } kappa = freq * M_PI; // 3. Read the (serial) mesh from the given mesh file on all processors. We // can handle triangular, quadrilateral, tetrahedral, hexahedral, surface // and volume meshes with the same code. Mesh *mesh = new Mesh(mesh_file, 1, 1); dim = mesh->Dimension(); int sdim = mesh->SpaceDimension(); // 4. Refine the serial mesh on all processors to increase the resolution. In // this example we do 'ref_levels' of uniform refinement. We choose // 'ref_levels' to be the largest number that gives a final mesh with no // more than 1,000 elements. { int ref_levels = (int)floor(log(1000./mesh->GetNE())/log(2.)/dim); for (int l = 0; l < ref_levels; l++) { mesh->UniformRefinement(); } } // 5. Define a parallel mesh by a partitioning of the serial mesh. Refine // this mesh further in parallel to increase the resolution. Once the // parallel mesh is defined, the serial mesh can be deleted. ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh); delete mesh; { int par_ref_levels = 2; for (int l = 0; l < par_ref_levels; l++) { pmesh->UniformRefinement(); } } // 6. Define a parallel finite element space on the parallel mesh. Here we // use the Nedelec finite elements of the specified order. FiniteElementCollection *fec = new ND_FECollection(order, dim); ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec); HYPRE_BigInt size = fespace->GlobalTrueVSize(); if (myid == 0) { cout << "Number of finite element unknowns: " << size << endl; } // 7. Determine the list of true (i.e. parallel conforming) essential // boundary dofs. In this example, the boundary conditions are defined // by marking all the boundary attributes from the mesh as essential // (Dirichlet) and converting them to a list of true dofs. Array ess_tdof_list; if (pmesh->bdr_attributes.Size()) { Array ess_bdr(pmesh->bdr_attributes.Max()); ess_bdr = 1; fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list); } // 8. Set up the parallel linear form b(.) which corresponds to the // right-hand side of the FEM linear system, which in this case is // (f,phi_i) where f is given by the function f_exact and phi_i are the // basis functions in the finite element fespace. VectorFunctionCoefficient f(sdim, f_exact); ParLinearForm *b = new ParLinearForm(fespace); b->AddDomainIntegrator(new VectorFEDomainLFIntegrator(f)); b->Assemble(); // 9. Define the solution vector x as a parallel finite element grid function // corresponding to fespace. Initialize x by projecting the exact // solution. Note that only values from the boundary edges will be used // when eliminating the non-homogeneous boundary condition to modify the // r.h.s. vector b. ParGridFunction x(fespace); VectorFunctionCoefficient E(sdim, E_exact); x.ProjectCoefficient(E); // 10. Set up the parallel bilinear form corresponding to the EM diffusion // operator curl muinv curl + sigma I, by adding the curl-curl and the // mass domain integrators. Coefficient *muinv = new ConstantCoefficient(1.0); Coefficient *sigma = new ConstantCoefficient(1.0); ParBilinearForm *a = new ParBilinearForm(fespace); a->AddDomainIntegrator(new CurlCurlIntegrator(*muinv)); a->AddDomainIntegrator(new VectorFEMassIntegrator(*sigma)); // 11. Assemble the parallel bilinear form and the corresponding linear // system, applying any necessary transformations such as: parallel // assembly, eliminating boundary conditions, applying conforming // constraints for non-conforming AMR, static condensation, etc. if (static_cond) { a->EnableStaticCondensation(); } a->Assemble(); Vector B, X; if (!use_petsc) { HypreParMatrix A; a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B); if (myid == 0) { cout << "Size of linear system: " << A.GetGlobalNumRows() << endl; } // 12. Define and apply a parallel PCG solver for AX=B with the AMS // preconditioner from hypre. ParFiniteElementSpace *prec_fespace = (a->StaticCondensationIsEnabled() ? a->SCParFESpace() : fespace); HypreSolver *ams = new HypreAMS(A, prec_fespace); HyprePCG *pcg = new HyprePCG(A); pcg->SetTol(1e-10); pcg->SetMaxIter(500); pcg->SetPrintLevel(2); pcg->SetPreconditioner(*ams); pcg->Mult(B, X); delete pcg; delete ams; } else { PetscParMatrix A; a->SetOperatorType(use_nonoverlapping ? Operator::PETSC_MATIS : Operator::PETSC_MATAIJ); a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B); if (myid == 0) { cout << "Size of linear system: " << A.M() << endl; } // 12. Define and apply a parallel PCG solver. ParFiniteElementSpace *prec_fespace = (a->StaticCondensationIsEnabled() ? a->SCParFESpace() : fespace); PetscPCGSolver *pcg = new PetscPCGSolver(A); PetscPreconditioner *prec = NULL; pcg->SetTol(1e-10); pcg->SetMaxIter(500); pcg->SetPrintLevel(2); if (use_nonoverlapping) { // Auxiliary class for BDDC customization PetscBDDCSolverParams opts; // Inform the solver about the finite element space opts.SetSpace(prec_fespace); // Inform the solver about essential dofs opts.SetEssBdrDofs(&ess_tdof_list); // Create a BDDC solver with parameters prec = new PetscBDDCSolver(A,opts); } else { // Create an empty preconditioner object that can // be customized at runtime prec = new PetscPreconditioner(A,"solver_"); } pcg->SetPreconditioner(*prec); pcg->Mult(B, X); delete pcg; delete prec; } // 13. Recover the parallel grid function corresponding to X. This is the // local finite element solution on each processor. a->RecoverFEMSolution(X, *b, x); // 14. Compute and print the L^2 norm of the error. { double err = x.ComputeL2Error(E); if (myid == 0) { cout << "\n|| E_h - E ||_{L^2} = " << err << '\n' << endl; } } // 15. Save the refined mesh and the solution in parallel. This output can // be viewed later using GLVis: "glvis -np -m mesh -g sol". { ostringstream mesh_name, sol_name; mesh_name << "mesh." << setfill('0') << setw(6) << myid; sol_name << "sol." << setfill('0') << setw(6) << myid; ofstream mesh_ofs(mesh_name.str().c_str()); mesh_ofs.precision(8); pmesh->Print(mesh_ofs); ofstream sol_ofs(sol_name.str().c_str()); sol_ofs.precision(8); x.Save(sol_ofs); } // 16. Send the solution by socket to a GLVis server. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock << "parallel " << num_procs << " " << myid << "\n"; sol_sock.precision(8); sol_sock << "solution\n" << *pmesh << x << flush; } // 17. Free the used memory. delete a; delete sigma; delete muinv; delete b; delete fespace; delete fec; delete pmesh; // We finalize PETSc if (use_petsc) { MFEMFinalizePetsc(); } return 0; } void E_exact(const Vector &x, Vector &E) { if (dim == 3) { E(0) = sin(kappa * x(1)); E(1) = sin(kappa * x(2)); E(2) = sin(kappa * x(0)); } else { E(0) = sin(kappa * x(1)); E(1) = sin(kappa * x(0)); if (x.Size() == 3) { E(2) = 0.0; } } } void f_exact(const Vector &x, Vector &f) { if (dim == 3) { f(0) = (1. + kappa * kappa) * sin(kappa * x(1)); f(1) = (1. + kappa * kappa) * sin(kappa * x(2)); f(2) = (1. + kappa * kappa) * sin(kappa * x(0)); } else { f(0) = (1. + kappa * kappa) * sin(kappa * x(1)); f(1) = (1. + kappa * kappa) * sin(kappa * x(0)); if (x.Size() == 3) { f(2) = 0.0; } } }