// MFEM Example 2 // PUMI Modification // // Compile with: make ex2 // // Sample runs: // ex2 -m ../../data/pumi/serial/pillbox.smb -p ../../data/pumi/geom/pillbox.dmg // -bf ../../data/pumi/serial/boundary.mesh // // Note: Example models + meshes for the PUMI examples can be downloaded // from github.com/mfem/data/pumi. After downloading we recommend // creating a symbolic link to the above directory in ../../data. // // Description: This example code solves a simple linear elasticity problem // describing a multi-material cantilever beam. // // Specifically, we approximate the weak form of -div(sigma(u))=0 // where sigma(u)=lambda*div(u)*I+mu*(grad*u+u*grad) is the stress // tensor corresponding to displacement field u, and lambda and mu // are the material Lame constants. The boundary conditions are // u=0 on the fixed part of the boundary with attribute 1, and // sigma(u).n=f on the remainder with f being a constant pull down // vector on boundary elements with attribute 2, and zero // otherwise. The geometry of the domain is assumed to be as // follows: // boundary // attribute 2 // (push down) // || // \/ // +----------+ // | | // | | // +---------| material |----------+ // boundary --->| material| 2 | material |<--- boundary // attribute 1 | 1 | | 3 | attribute 1 // (fixed) +---------+----------+----------+ (fixed) // // The example demonstrates the use of high-order and NURBS vector // finite element spaces with the linear elasticity bilinear form, // meshes with curved elements, and the definition of piece-wise // constant and vector coefficient objects. Static condensation is // also illustrated. // // We recommend viewing Example 1 before viewing this example. // // NOTE: Model/Mesh files for this example are in the (large) data file // repository of MFEM here https://github.com/mfem/data under the // folder named "pumi", which consists of the following sub-folders: // a) geom --> model files // b) parallel --> parallel pumi mesh files // c) serial --> serial pumi mesh files #include "mfem.hpp" #include #include #include "../../general/text.hpp" #ifdef MFEM_USE_SIMMETRIX #include #include #endif #include #include #include #include #include #include #ifndef MFEM_USE_PUMI #error This example requires that MFEM is built with MFEM_USE_PUMI=YES #endif using namespace std; using namespace mfem; int main(int argc, char *argv[]) { // 1. Initialize MPI (required by PUMI) and HYPRE. Mpi::Init(argc, argv); int num_proc = Mpi::WorldSize(); int myId = Mpi::WorldRank(); Hypre::Init(); // 2. Parse command-line options. const char *mesh_file = "../../data/pumi/serial/pillbox.smb"; const char *boundary_file = "../../data/pumi/serial/boundary.mesh"; #ifdef MFEM_USE_SIMMETRIX const char *model_file = "../../data/pumi/geom/pillbox.smd"; #else const char *model_file = "../../data/pumi/geom/pillbox.dmg"; #endif int order = 1; bool static_cond = false; bool visualization = 1; int geom_order = 1; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree)."); args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc", "--no-static-condensation", "Enable static condensation."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(&model_file, "-p", "--parasolid", "Parasolid model to use."); args.AddOption(&geom_order, "-go", "--geometry_order", "Geometric order of the model"); args.AddOption(&boundary_file, "-bf", "--txt", "txt file containing boundary tags"); args.Parse(); if (!args.Good()) { args.PrintUsage(cout); return 1; } args.PrintOptions(cout); // 3. Read the SCOREC Mesh. PCU_Comm_Init(); #ifdef MFEM_USE_SIMMETRIX Sim_readLicenseFile(0); gmi_sim_start(); gmi_register_sim(); #endif gmi_register_mesh(); apf::Mesh2* pumi_mesh; pumi_mesh = apf::loadMdsMesh(model_file, mesh_file); // 4. Increase the geometry order if necessary. if (geom_order > 1) { crv::BezierCurver bc(pumi_mesh, geom_order, 0); bc.run(); } pumi_mesh->verify(); // Read boundary string bdr_tags; named_ifgzstream input_bdr(boundary_file); input_bdr >> ws; getline(input_bdr, bdr_tags); filter_dos(bdr_tags); cout << " the boundary tag is : " << bdr_tags << endl; Array Dirichlet; int numOfent; if (bdr_tags == "Dirichlet") { input_bdr >> numOfent; cout << " num of Dirichlet bdr conditions : " << numOfent << endl; Dirichlet.SetSize(numOfent); for (int kk = 0; kk < numOfent; kk++) { input_bdr >> Dirichlet[kk]; } } Dirichlet.Print(); Array load_bdr; skip_comment_lines(input_bdr, '#'); input_bdr >> bdr_tags; filter_dos(bdr_tags); cout << " the boundary tag is : " << bdr_tags << endl; if (bdr_tags == "Load") { input_bdr >> numOfent; load_bdr.SetSize(numOfent); cout << " num of load bdr conditions : " << numOfent << endl; for (int kk = 0; kk < numOfent; kk++) { input_bdr >> load_bdr[kk]; } } load_bdr.Print(); // 5. Create the MFEM mesh object from the PUMI mesh. We can handle triangular // and tetrahedral meshes. Other inputs are the same as MFEM default // constructor. Mesh *mesh = new PumiMesh(pumi_mesh, 1, 1); int dim = mesh->Dimension(); // Boundary conditions hack. apf::MeshIterator* itr = pumi_mesh->begin(dim-1); apf::MeshEntity* ent ; int bdr_cnt = 0; while ((ent = pumi_mesh->iterate(itr))) { apf::ModelEntity *me = pumi_mesh->toModel(ent); if (pumi_mesh->getModelType(me) == (dim-1)) { // Everywhere 3 as initial (mesh->GetBdrElement(bdr_cnt))->SetAttribute(3); int tag = pumi_mesh->getModelTag(me); if (Dirichlet.Find(tag) != -1) { // Dirichlet attr -> 1 (mesh->GetBdrElement(bdr_cnt))->SetAttribute(1); } else if (load_bdr.Find(tag) != -1) { // Load attr -> 2 (mesh->GetBdrElement(bdr_cnt))->SetAttribute(2); } bdr_cnt++; } } pumi_mesh->end(itr); // Assign attributes for elements. double ppt[3]; Vector cent(ppt, dim); for (int el = 0; el < mesh->GetNE(); el++) { (mesh->GetElementTransformation(el))-> Transform(Geometries.GetCenter(mesh->GetElementBaseGeometry(el)),cent); if (cent(0) <= -0.05) { mesh->SetAttribute(el, 1); } else if (cent(0) >= 0.05) { mesh->SetAttribute(el, 2); } else { mesh->SetAttribute(el, 3); } } mesh->SetAttributes(); if (mesh->attributes.Max() < 2 || mesh->bdr_attributes.Max() < 2) { cerr << "\nInput mesh should have at least two materials and " << "two boundary attributes! (See schematic in ex2.cpp)\n" << endl; return 3; } // 6. Refine the mesh to increase the resolution. In this example we do // 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the // largest number that gives a final mesh with no more than 5,000 // elements. { int ref_levels = (int)floor(log(5000./mesh->GetNE())/log(2.)/dim); for (int l = 0; l < ref_levels; l++) { mesh->UniformRefinement(); } } // 7. Define a finite element space on the mesh. Here we use vector finite // elements, i.e. dim copies of a scalar finite element space. The vector // dimension is specified by the last argument of the FiniteElementSpace // constructor. For NURBS meshes, we use the (degree elevated) NURBS space // associated with the mesh nodes. FiniteElementCollection *fec; FiniteElementSpace *fespace; if (mesh->NURBSext) { fec = NULL; fespace = mesh->GetNodes()->FESpace(); } else { fec = new H1_FECollection(order, dim); fespace = new FiniteElementSpace(mesh, fec, dim); } cout << "Number of finite element unknowns: " << fespace->GetTrueVSize() << endl << "Assembling: " << flush; // 8. Determine the list of true (i.e. conforming) essential boundary dofs. // In this example, the boundary conditions are defined by marking only // boundary attribute 1 from the mesh as essential and converting it to a // list of true dofs. Array ess_tdof_list, ess_bdr(mesh->bdr_attributes.Max()); ess_bdr = 0; ess_bdr[0] = 1; fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list); // 9. Set up the linear form b(.) which corresponds to the right-hand side of // the FEM linear system. In this case, b_i equals the boundary integral // of f*phi_i where f represents a "pull down" force on the Neumann part // of the boundary and phi_i are the basis functions in the finite element // fespace. The force is defined by the VectorArrayCoefficient object f, // which is a vector of Coefficient objects. The fact that f is non-zero // on boundary attribute 2 is indicated by the use of piece-wise constants // coefficient for its last component. VectorArrayCoefficient f(dim); for (int i = 0; i < dim-1; i++) { f.Set(i, new ConstantCoefficient(0.0)); } { Vector pull_force(mesh->bdr_attributes.Max()); pull_force = 0.0; pull_force(1) = -3.0e-2; f.Set(dim-1, new PWConstCoefficient(pull_force)); f.Set(dim-2, new PWConstCoefficient(pull_force)); } LinearForm *b = new LinearForm(fespace); b->AddBoundaryIntegrator(new VectorBoundaryLFIntegrator(f)); cout << "r.h.s. ... " << flush; b->Assemble(); // 10. Define the solution vector x as a finite element grid function // corresponding to fespace. Initialize x with initial guess of zero, // which satisfies the boundary conditions. GridFunction x(fespace); x = 0.0; // 11. Set up the bilinear form a(.,.) on the finite element space // corresponding to the linear elasticity integrator with piece-wise // constants coefficient lambda and mu. Vector lambda(mesh->attributes.Max()); lambda = 1.0; lambda(0) = lambda(1)*10; lambda(1) = lambda(1)*100; PWConstCoefficient lambda_func(lambda); Vector mu(mesh->attributes.Max()); mu = 1.0; mu(0) = mu(1)*10; mu(1) = mu(1)*100; PWConstCoefficient mu_func(mu); BilinearForm *a = new BilinearForm(fespace); a->AddDomainIntegrator(new ElasticityIntegrator(lambda_func,mu_func)); // 12. Assemble the bilinear form and the corresponding linear system, // applying any necessary transformations such as: eliminating boundary // conditions, applying conforming constraints for non-conforming AMR, // static condensation, etc. cout << "matrix ... " << flush; if (static_cond) { a->EnableStaticCondensation(); } a->Assemble(); SparseMatrix A; Vector B, X; a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B); cout << "done." << endl; cout << "Size of linear system: " << A.Height() << endl; #ifndef MFEM_USE_SUITESPARSE // 13. Define a simple symmetric Gauss-Seidel preconditioner and use it to // solve the system Ax=b with PCG. GSSmoother M(A); PCG(A, M, B, X, 1, 500, 1e-8, 0.0); #else // 13. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system. UMFPackSolver umf_solver; umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS; umf_solver.SetOperator(A); umf_solver.Mult(B, X); #endif // 14. Recover the solution as a finite element grid function. a->RecoverFEMSolution(X, *b, x); // 15. For non-NURBS meshes, make the mesh curved based on the finite element // space. This means that we define the mesh elements through a fespace // based transformation of the reference element. This allows us to save // the displaced mesh as a curved mesh when using high-order finite // element displacement field. We assume that the initial mesh (read from // the file) is not higher order curved mesh compared to the chosen FE // space. if (!mesh->NURBSext) { mesh->SetNodalFESpace(fespace); } // 16. Save the displaced mesh and the inverted solution (which gives the // backward displacements to the original grid). This output can be // viewed later using GLVis: "glvis -m displaced.mesh -g sol.gf". { GridFunction *nodes = mesh->GetNodes(); *nodes += x; x *= -1; ofstream mesh_ofs("displaced.mesh"); mesh_ofs.precision(8); mesh->Print(mesh_ofs); ofstream sol_ofs("sol.gf"); sol_ofs.precision(8); x.Save(sol_ofs); } // 17. Send the above data by socket to a GLVis server. Use the "n" and "b" // keys in GLVis to visualize the displacements. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock.precision(8); sol_sock << "solution\n" << *mesh << x << flush; } // 18. Free the used memory. delete a; delete b; if (fec) { delete fespace; delete fec; } delete mesh; pumi_mesh->destroyNative(); apf::destroyMesh(pumi_mesh); PCU_Comm_Free(); #ifdef MFEM_USE_SIMMETRIX gmi_sim_stop(); Sim_unregisterAllKeys(); #endif return 0; }