// Copyright (c) 2010-2023, Lawrence Livermore National Security, LLC. Produced // at the Lawrence Livermore National Laboratory. All Rights reserved. See files // LICENSE and NOTICE for details. LLNL-CODE-806117. // // This file is part of the MFEM library. For more information and source code // availability visit https://mfem.org. // // MFEM is free software; you can redistribute it and/or modify it under the // terms of the BSD-3 license. We welcome feedback and contributions, see file // CONTRIBUTING.md for details. // Implementation of GridFunction #include "gridfunc.hpp" #include "quadinterpolator.hpp" #include "../mesh/nurbs.hpp" #include "../general/text.hpp" #ifdef MFEM_USE_MPI #include "pfespace.hpp" #endif #include #include #include #include #include #include namespace mfem { using namespace std; GridFunction::GridFunction(Mesh *m, std::istream &input) : Vector() { // Grid functions are stored on the device UseDevice(true); fes = new FiniteElementSpace; fec = fes->Load(m, input); skip_comment_lines(input, '#'); istream::int_type next_char = input.peek(); if (next_char == 'N') // First letter of "NURBS_patches" { string buff; getline(input, buff); filter_dos(buff); if (buff == "NURBS_patches") { MFEM_VERIFY(fes->GetNURBSext(), "NURBS_patches requires NURBS FE space"); fes->GetNURBSext()->LoadSolution(input, *this); } else { MFEM_ABORT("unknown section: " << buff); } } else { Vector::Load(input, fes->GetVSize()); // if the mesh is a legacy (v1.1) NC mesh, it has old vertex ordering if (fes->Nonconforming() && fes->GetMesh()->ncmesh->IsLegacyLoaded()) { LegacyNCReorder(); } } fes_sequence = fes->GetSequence(); } GridFunction::GridFunction(Mesh *m, GridFunction *gf_array[], int num_pieces) { UseDevice(true); // all GridFunctions must have the same FE collection, vdim, ordering int vdim, ordering; fes = gf_array[0]->FESpace(); fec = FiniteElementCollection::New(fes->FEColl()->Name()); vdim = fes->GetVDim(); ordering = fes->GetOrdering(); fes = new FiniteElementSpace(m, fec, vdim, ordering); SetSize(fes->GetVSize()); if (m->NURBSext) { m->NURBSext->MergeGridFunctions(gf_array, num_pieces, *this); return; } int g_ndofs = fes->GetNDofs(); int g_nvdofs = fes->GetNVDofs(); int g_nedofs = fes->GetNEDofs(); int g_nfdofs = fes->GetNFDofs(); int g_nddofs = g_ndofs - (g_nvdofs + g_nedofs + g_nfdofs); int vi, ei, fi, di; vi = ei = fi = di = 0; for (int i = 0; i < num_pieces; i++) { FiniteElementSpace *l_fes = gf_array[i]->FESpace(); int l_ndofs = l_fes->GetNDofs(); int l_nvdofs = l_fes->GetNVDofs(); int l_nedofs = l_fes->GetNEDofs(); int l_nfdofs = l_fes->GetNFDofs(); int l_nddofs = l_ndofs - (l_nvdofs + l_nedofs + l_nfdofs); const double *l_data = gf_array[i]->GetData(); double *g_data = data; if (ordering == Ordering::byNODES) { for (int d = 0; d < vdim; d++) { memcpy(g_data+vi, l_data, l_nvdofs*sizeof(double)); l_data += l_nvdofs; g_data += g_nvdofs; memcpy(g_data+ei, l_data, l_nedofs*sizeof(double)); l_data += l_nedofs; g_data += g_nedofs; memcpy(g_data+fi, l_data, l_nfdofs*sizeof(double)); l_data += l_nfdofs; g_data += g_nfdofs; memcpy(g_data+di, l_data, l_nddofs*sizeof(double)); l_data += l_nddofs; g_data += g_nddofs; } } else { memcpy(g_data+vdim*vi, l_data, l_nvdofs*sizeof(double)*vdim); l_data += vdim*l_nvdofs; g_data += vdim*g_nvdofs; memcpy(g_data+vdim*ei, l_data, l_nedofs*sizeof(double)*vdim); l_data += vdim*l_nedofs; g_data += vdim*g_nedofs; memcpy(g_data+vdim*fi, l_data, l_nfdofs*sizeof(double)*vdim); l_data += vdim*l_nfdofs; g_data += vdim*g_nfdofs; memcpy(g_data+vdim*di, l_data, l_nddofs*sizeof(double)*vdim); l_data += vdim*l_nddofs; g_data += vdim*g_nddofs; } vi += l_nvdofs; ei += l_nedofs; fi += l_nfdofs; di += l_nddofs; } fes_sequence = fes->GetSequence(); } void GridFunction::Destroy() { if (fec) { delete fes; delete fec; fec = NULL; } } void GridFunction::Update() { if (fes->GetSequence() == fes_sequence) { return; // space and grid function are in sync, no-op } // it seems we cannot use the following, due to FESpace::Update(false) /*if (fes->GetSequence() != fes_sequence + 1) { MFEM_ABORT("Error in update sequence. GridFunction needs to be updated " "right after the space is updated."); }*/ fes_sequence = fes->GetSequence(); const Operator *T = fes->GetUpdateOperator(); if (T) { Vector old_data; old_data.Swap(*this); SetSize(T->Height()); UseDevice(true); T->Mult(old_data, *this); } else { SetSize(fes->GetVSize()); } if (t_vec.Size() > 0) { SetTrueVector(); } } void GridFunction::SetSpace(FiniteElementSpace *f) { if (f != fes) { Destroy(); } fes = f; SetSize(fes->GetVSize()); fes_sequence = fes->GetSequence(); } void GridFunction::MakeRef(FiniteElementSpace *f, double *v) { if (f != fes) { Destroy(); } fes = f; NewDataAndSize(v, fes->GetVSize()); fes_sequence = fes->GetSequence(); } void GridFunction::MakeRef(FiniteElementSpace *f, Vector &v, int v_offset) { MFEM_ASSERT(v.Size() >= v_offset + f->GetVSize(), ""); if (f != fes) { Destroy(); } fes = f; v.UseDevice(true); this->Vector::MakeRef(v, v_offset, fes->GetVSize()); fes_sequence = fes->GetSequence(); } void GridFunction::MakeTRef(FiniteElementSpace *f, double *tv) { if (IsIdentityProlongation(f->GetProlongationMatrix())) { MakeRef(f, tv); t_vec.NewDataAndSize(tv, size); } else { SetSpace(f); // works in parallel t_vec.NewDataAndSize(tv, f->GetTrueVSize()); } } void GridFunction::MakeTRef(FiniteElementSpace *f, Vector &tv, int tv_offset) { tv.UseDevice(true); if (IsIdentityProlongation(f->GetProlongationMatrix())) { MakeRef(f, tv, tv_offset); t_vec.NewMemoryAndSize(data, size, false); } else { MFEM_ASSERT(tv.Size() >= tv_offset + f->GetTrueVSize(), ""); SetSpace(f); // works in parallel t_vec.MakeRef(tv, tv_offset, f->GetTrueVSize()); } } void GridFunction::SumFluxAndCount(BilinearFormIntegrator &blfi, GridFunction &flux, Array& count, bool wcoef, int subdomain) { GridFunction &u = *this; ElementTransformation *Transf; DofTransformation *udoftrans; DofTransformation *fdoftrans; FiniteElementSpace *ufes = u.FESpace(); FiniteElementSpace *ffes = flux.FESpace(); int nfe = ufes->GetNE(); Array udofs; Array fdofs; Vector ul, fl; flux = 0.0; count = 0; for (int i = 0; i < nfe; i++) { if (subdomain >= 0 && ufes->GetAttribute(i) != subdomain) { continue; } udoftrans = ufes->GetElementVDofs(i, udofs); fdoftrans = ffes->GetElementVDofs(i, fdofs); u.GetSubVector(udofs, ul); if (udoftrans) { udoftrans->InvTransformPrimal(ul); } Transf = ufes->GetElementTransformation(i); blfi.ComputeElementFlux(*ufes->GetFE(i), *Transf, ul, *ffes->GetFE(i), fl, wcoef); if (fdoftrans) { fdoftrans->TransformPrimal(fl); } flux.AddElementVector(fdofs, fl); FiniteElementSpace::AdjustVDofs(fdofs); for (int j = 0; j < fdofs.Size(); j++) { count[fdofs[j]]++; } } } void GridFunction::ComputeFlux(BilinearFormIntegrator &blfi, GridFunction &flux, bool wcoef, int subdomain) { Array count(flux.Size()); SumFluxAndCount(blfi, flux, count, wcoef, subdomain); // complete averaging for (int i = 0; i < count.Size(); i++) { if (count[i] != 0) { flux(i) /= count[i]; } } } int GridFunction::VectorDim() const { const FiniteElement *fe; if (!fes->GetNE()) { const FiniteElementCollection *fe_coll = fes->FEColl(); static const Geometry::Type geoms[3] = { Geometry::SEGMENT, Geometry::TRIANGLE, Geometry::TETRAHEDRON }; fe = fe_coll-> FiniteElementForGeometry(geoms[fes->GetMesh()->Dimension()-1]); } else { fe = fes->GetFE(0); } if (!fe || fe->GetRangeType() == FiniteElement::SCALAR) { return fes->GetVDim(); } return fes->GetVDim()*std::max(fes->GetMesh()->SpaceDimension(), fe->GetVDim()); } int GridFunction::CurlDim() const { const FiniteElement *fe; if (!fes->GetNE()) { static const Geometry::Type geoms[3] = { Geometry::SEGMENT, Geometry::TRIANGLE, Geometry::TETRAHEDRON }; fe = fec->FiniteElementForGeometry(geoms[fes->GetMesh()->Dimension()-1]); } else { fe = fes->GetFE(0); } if (!fe || fe->GetRangeType() == FiniteElement::SCALAR) { return 2 * fes->GetMesh()->SpaceDimension() - 3; } return fes->GetVDim()*fe->GetCurlDim(); } void GridFunction::GetTrueDofs(Vector &tv) const { const SparseMatrix *R = fes->GetRestrictionMatrix(); if (!R || IsIdentityProlongation(fes->GetProlongationMatrix())) { // R is identity tv = *this; // no real copy if 'tv' and '*this' use the same data } else { tv.SetSize(R->Height()); R->Mult(*this, tv); } } void GridFunction::SetFromTrueDofs(const Vector &tv) { MFEM_ASSERT(tv.Size() == fes->GetTrueVSize(), "invalid input"); const SparseMatrix *cP = fes->GetConformingProlongation(); if (!cP) { *this = tv; // no real copy if 'tv' and '*this' use the same data } else { cP->Mult(tv, *this); } } void GridFunction::GetNodalValues(int i, Array &nval, int vdim) const { Array vdofs; DofTransformation * doftrans = fes->GetElementVDofs(i, vdofs); const FiniteElement *FElem = fes->GetFE(i); const IntegrationRule *ElemVert = Geometries.GetVertices(FElem->GetGeomType()); int dof = FElem->GetDof(); int n = ElemVert->GetNPoints(); nval.SetSize(n); vdim--; Vector loc_data; GetSubVector(vdofs, loc_data); if (doftrans) { doftrans->InvTransformPrimal(loc_data); } if (FElem->GetRangeType() == FiniteElement::SCALAR) { Vector shape(dof); if (FElem->GetMapType() == FiniteElement::VALUE) { for (int k = 0; k < n; k++) { FElem->CalcShape(ElemVert->IntPoint(k), shape); nval[k] = shape * (&loc_data[dof * vdim]); } } else { ElementTransformation *Tr = fes->GetElementTransformation(i); for (int k = 0; k < n; k++) { Tr->SetIntPoint(&ElemVert->IntPoint(k)); FElem->CalcPhysShape(*Tr, shape); nval[k] = shape * (&loc_data[dof * vdim]); } } } else { ElementTransformation *Tr = fes->GetElementTransformation(i); DenseMatrix vshape(dof, FElem->GetDim()); for (int k = 0; k < n; k++) { Tr->SetIntPoint(&ElemVert->IntPoint(k)); FElem->CalcVShape(*Tr, vshape); nval[k] = loc_data * (&vshape(0,vdim)); } } } double GridFunction::GetValue(int i, const IntegrationPoint &ip, int vdim) const { Array dofs; DofTransformation * doftrans = fes->GetElementDofs(i, dofs); fes->DofsToVDofs(vdim-1, dofs); Vector DofVal(dofs.Size()), LocVec; const FiniteElement *fe = fes->GetFE(i); if (fe->GetMapType() == FiniteElement::VALUE) { fe->CalcShape(ip, DofVal); } else { ElementTransformation *Tr = fes->GetElementTransformation(i); Tr->SetIntPoint(&ip); fe->CalcPhysShape(*Tr, DofVal); } GetSubVector(dofs, LocVec); if (doftrans) { doftrans->InvTransformPrimal(LocVec); } return (DofVal * LocVec); } void GridFunction::GetVectorValue(int i, const IntegrationPoint &ip, Vector &val) const { const FiniteElement *FElem = fes->GetFE(i); int dof = FElem->GetDof(); Array vdofs; DofTransformation * doftrans = fes->GetElementVDofs(i, vdofs); Vector loc_data; GetSubVector(vdofs, loc_data); if (doftrans) { doftrans->InvTransformPrimal(loc_data); } if (FElem->GetRangeType() == FiniteElement::SCALAR) { Vector shape(dof); if (FElem->GetMapType() == FiniteElement::VALUE) { FElem->CalcShape(ip, shape); } else { ElementTransformation *Tr = fes->GetElementTransformation(i); Tr->SetIntPoint(&ip); FElem->CalcPhysShape(*Tr, shape); } int vdim = fes->GetVDim(); val.SetSize(vdim); for (int k = 0; k < vdim; k++) { val(k) = shape * (&loc_data[dof * k]); } } else { int vdim = VectorDim(); DenseMatrix vshape(dof, vdim); ElementTransformation *Tr = fes->GetElementTransformation(i); Tr->SetIntPoint(&ip); FElem->CalcVShape(*Tr, vshape); val.SetSize(vdim); vshape.MultTranspose(loc_data, val); } } void GridFunction::GetValues(int i, const IntegrationRule &ir, Vector &vals, int vdim) const { Array dofs; int n = ir.GetNPoints(); vals.SetSize(n); DofTransformation * doftrans = fes->GetElementDofs(i, dofs); fes->DofsToVDofs(vdim-1, dofs); const FiniteElement *FElem = fes->GetFE(i); int dof = FElem->GetDof(); Vector DofVal(dof), loc_data(dof); GetSubVector(dofs, loc_data); if (doftrans) { doftrans->InvTransformPrimal(loc_data); } if (FElem->GetMapType() == FiniteElement::VALUE) { for (int k = 0; k < n; k++) { FElem->CalcShape(ir.IntPoint(k), DofVal); vals(k) = DofVal * loc_data; } } else { ElementTransformation *Tr = fes->GetElementTransformation(i); for (int k = 0; k < n; k++) { Tr->SetIntPoint(&ir.IntPoint(k)); FElem->CalcPhysShape(*Tr, DofVal); vals(k) = DofVal * loc_data; } } } void GridFunction::GetValues(int i, const IntegrationRule &ir, Vector &vals, DenseMatrix &tr, int vdim) const { ElementTransformation *ET; ET = fes->GetElementTransformation(i); ET->Transform(ir, tr); GetValues(i, ir, vals, vdim); } void GridFunction::GetLaplacians(int i, const IntegrationRule &ir, Vector &laps, int vdim) const { Array dofs; int n = ir.GetNPoints(); laps.SetSize(n); fes->GetElementDofs(i, dofs); fes->DofsToVDofs(vdim-1, dofs); const FiniteElement *FElem = fes->GetFE(i); ElementTransformation *ET; ET = fes->GetElementTransformation(i); MFEM_ASSERT(FElem->GetMapType() == FiniteElement::VALUE, "invalid FE map type"); int dof = FElem->GetDof(); Vector DofLap(dof), loc_data(dof); GetSubVector(dofs, loc_data); for (int k = 0; k < n; k++) { const IntegrationPoint &ip = ir.IntPoint(k); ET->SetIntPoint(&ip); FElem->CalcPhysLaplacian(*ET, DofLap); laps(k) = DofLap * loc_data; } } void GridFunction::GetLaplacians(int i, const IntegrationRule &ir, Vector &laps, DenseMatrix &tr, int vdim) const { ElementTransformation *ET; ET = fes->GetElementTransformation(i); ET->Transform(ir, tr); GetLaplacians(i, ir, laps, vdim); } void GridFunction::GetHessians(int i, const IntegrationRule &ir, DenseMatrix &hess, int vdim) const { Array dofs; int n = ir.GetNPoints(); fes->GetElementDofs(i, dofs); fes->DofsToVDofs(vdim-1, dofs); const FiniteElement *FElem = fes->GetFE(i); ElementTransformation *ET; ET = fes->GetElementTransformation(i); int dim = FElem->GetDim(); int size = (dim*(dim+1))/2; MFEM_ASSERT(FElem->GetMapType() == FiniteElement::VALUE, "invalid FE map type"); int dof = FElem->GetDof(); DenseMatrix DofHes(dof, size); hess.SetSize(n, size); Vector loc_data(dof); GetSubVector(dofs, loc_data); hess = 0.0; for (int k = 0; k < n; k++) { const IntegrationPoint &ip = ir.IntPoint(k); ET->SetIntPoint(&ip); FElem->CalcPhysHessian(*ET, DofHes); for (int j = 0; j < size; j++) { for (int d = 0; d < dof; d++) { hess(k,j) += DofHes(d,j) * loc_data[d]; } } } } void GridFunction::GetHessians(int i, const IntegrationRule &ir, DenseMatrix &hess, DenseMatrix &tr, int vdim) const { ElementTransformation *ET; ET = fes->GetElementTransformation(i); ET->Transform(ir, tr); GetHessians(i, ir, hess, vdim); } int GridFunction::GetFaceValues(int i, int side, const IntegrationRule &ir, Vector &vals, DenseMatrix &tr, int vdim) const { int n, dir; FaceElementTransformations *Transf; n = ir.GetNPoints(); IntegrationRule eir(n); // --- if (side == 2) // automatic choice of side { Transf = fes->GetMesh()->GetFaceElementTransformations(i, 0); if (Transf->Elem2No < 0 || fes->GetAttribute(Transf->Elem1No) <= fes->GetAttribute(Transf->Elem2No)) { dir = 0; } else { dir = 1; } } else { if (side == 1 && !fes->GetMesh()->FaceIsInterior(i)) { dir = 0; } else { dir = side; } } if (dir == 0) { Transf = fes->GetMesh()->GetFaceElementTransformations(i, 4); Transf->Loc1.Transform(ir, eir); GetValues(Transf->Elem1No, eir, vals, tr, vdim); } else { Transf = fes->GetMesh()->GetFaceElementTransformations(i, 8); Transf->Loc2.Transform(ir, eir); GetValues(Transf->Elem2No, eir, vals, tr, vdim); } return dir; } void GridFunction::GetVectorValues(int i, const IntegrationRule &ir, DenseMatrix &vals, DenseMatrix &tr) const { ElementTransformation *Tr = fes->GetElementTransformation(i); Tr->Transform(ir, tr); GetVectorValues(*Tr, ir, vals); } void be_to_bfe(Geometry::Type geom, int o, const IntegrationPoint &ip, IntegrationPoint &fip) { if (geom == Geometry::TRIANGLE) { if (o == 2) { fip.x = 1.0 - ip.x - ip.y; fip.y = ip.x; } else if (o == 4) { fip.x = ip.y; fip.y = 1.0 - ip.x - ip.y; } else { fip.x = ip.x; fip.y = ip.y; } fip.z = ip.z; } else { if (o == 2) { fip.x = ip.y; fip.y = 1.0 - ip.x; } else if (o == 4) { fip.x = 1.0 - ip.x; fip.y = 1.0 - ip.y; } else if (o == 6) { fip.x = 1.0 - ip.y; fip.y = ip.x; } else { fip.x = ip.x; fip.y = ip.y; } fip.z = ip.z; } fip.weight = ip.weight; fip.index = ip.index; } double GridFunction::GetValue(ElementTransformation &T, const IntegrationPoint &ip, int comp, Vector *tr) const { if (tr) { T.SetIntPoint(&ip); T.Transform(ip, *tr); } const FiniteElement * fe = NULL; Array dofs; switch (T.ElementType) { case ElementTransformation::ELEMENT: fe = fes->GetFE(T.ElementNo); fes->GetElementDofs(T.ElementNo, dofs); break; case ElementTransformation::EDGE: if (fes->FEColl()->GetContType() == FiniteElementCollection::CONTINUOUS) { fe = fes->GetEdgeElement(T.ElementNo); fes->GetEdgeDofs(T.ElementNo, dofs); } else { MFEM_ABORT("GridFunction::GetValue: Field continuity type \"" << fes->FEColl()->GetContType() << "\" not supported " << "on mesh edges."); return NAN; } break; case ElementTransformation::FACE: if (fes->FEColl()->GetContType() == FiniteElementCollection::CONTINUOUS) { fe = fes->GetFaceElement(T.ElementNo); fes->GetFaceDofs(T.ElementNo, dofs); } else { MFEM_ABORT("GridFunction::GetValue: Field continuity type \"" << fes->FEColl()->GetContType() << "\" not supported " << "on mesh faces."); return NAN; } break; case ElementTransformation::BDR_ELEMENT: { if (fes->FEColl()->GetContType() == FiniteElementCollection::CONTINUOUS) { // This is a continuous field so we can evaluate it on the boundary. fe = fes->GetBE(T.ElementNo); fes->GetBdrElementDofs(T.ElementNo, dofs); } else { // This is a discontinuous field which cannot be evaluated on the // boundary so we'll evaluate it in the neighboring element. FaceElementTransformations * FET = fes->GetMesh()->GetBdrFaceTransformations(T.ElementNo); // Boundary elements and Boundary Faces may have different // orientations so adjust the integration point if necessary. int o = 0; if (fes->GetMesh()->Dimension() == 3) { int f; fes->GetMesh()->GetBdrElementFace(T.ElementNo, &f, &o); } IntegrationPoint fip; be_to_bfe(FET->GetGeometryType(), o, ip, fip); // Compute and set the point in element 1 from fip FET->SetAllIntPoints(&fip); ElementTransformation & T1 = FET->GetElement1Transformation(); return GetValue(T1, T1.GetIntPoint(), comp); } } break; case ElementTransformation::BDR_FACE: { FaceElementTransformations * FET = dynamic_cast(&T); // Evaluate in neighboring element for both continuous and // discontinuous fields (the integration point in T1 should have // already been set). ElementTransformation & T1 = FET->GetElement1Transformation(); return GetValue(T1, T1.GetIntPoint(), comp); } default: { MFEM_ABORT("GridFunction::GetValue: Unsupported element type \"" << T.ElementType << "\""); return NAN; } } fes->DofsToVDofs(comp-1, dofs); Vector DofVal(dofs.Size()), LocVec; if (fe->GetMapType() == FiniteElement::VALUE) { fe->CalcShape(ip, DofVal); } else { fe->CalcPhysShape(T, DofVal); } GetSubVector(dofs, LocVec); return (DofVal * LocVec); } void GridFunction::GetValues(ElementTransformation &T, const IntegrationRule &ir, Vector &vals, int comp, DenseMatrix *tr) const { if (tr) { T.Transform(ir, *tr); } int nip = ir.GetNPoints(); vals.SetSize(nip); for (int j = 0; j < nip; j++) { const IntegrationPoint &ip = ir.IntPoint(j); T.SetIntPoint(&ip); vals[j] = GetValue(T, ip, comp); } } void GridFunction::GetVectorValue(ElementTransformation &T, const IntegrationPoint &ip, Vector &val, Vector *tr) const { if (tr) { T.SetIntPoint(&ip); T.Transform(ip, *tr); } Array vdofs; const FiniteElement *fe = NULL; DofTransformation * doftrans = NULL; switch (T.ElementType) { case ElementTransformation::ELEMENT: doftrans = fes->GetElementVDofs(T.ElementNo, vdofs); fe = fes->GetFE(T.ElementNo); break; case ElementTransformation::EDGE: if (fes->FEColl()->GetContType() == FiniteElementCollection::CONTINUOUS) { fe = fes->GetEdgeElement(T.ElementNo); fes->GetEdgeVDofs(T.ElementNo, vdofs); } else { MFEM_ABORT("GridFunction::GetVectorValue: Field continuity type \"" << fes->FEColl()->GetContType() << "\" not supported " << "on mesh edges."); return; } break; case ElementTransformation::FACE: if (fes->FEColl()->GetContType() == FiniteElementCollection::CONTINUOUS) { fe = fes->GetFaceElement(T.ElementNo); fes->GetFaceVDofs(T.ElementNo, vdofs); } else { MFEM_ABORT("GridFunction::GetVectorValue: Field continuity type \"" << fes->FEColl()->GetContType() << "\" not supported " << "on mesh faces."); return; } break; case ElementTransformation::BDR_ELEMENT: { if (fes->FEColl()->GetContType() == FiniteElementCollection::CONTINUOUS) { // This is a continuous field so we can evaluate it on the boundary. fes->GetBdrElementVDofs(T.ElementNo, vdofs); fe = fes->GetBE(T.ElementNo); } else { // This is a discontinuous vector field which cannot be evaluated on // the boundary so we'll evaluate it in the neighboring element. FaceElementTransformations * FET = fes->GetMesh()->GetBdrFaceTransformations(T.ElementNo); // Boundary elements and Boundary Faces may have different // orientations so adjust the integration point if necessary. int o = 0; if (fes->GetMesh()->Dimension() == 3) { int f; fes->GetMesh()->GetBdrElementFace(T.ElementNo, &f, &o); } IntegrationPoint fip; be_to_bfe(FET->GetGeometryType(), o, ip, fip); // Compute and set the point in element 1 from fip FET->SetAllIntPoints(&fip); ElementTransformation & T1 = FET->GetElement1Transformation(); return GetVectorValue(T1, T1.GetIntPoint(), val); } } break; case ElementTransformation::BDR_FACE: { FaceElementTransformations * FET = dynamic_cast(&T); // Evaluate in neighboring element for both continuous and // discontinuous fields (the integration point in T1 should have // already been set). ElementTransformation & T1 = FET->GetElement1Transformation(); return GetVectorValue(T1, T1.GetIntPoint(), val); } default: { MFEM_ABORT("GridFunction::GetVectorValue: Unsupported element type \"" << T.ElementType << "\""); if (val.Size() > 0) { val = NAN; } return; } } int dof = fe->GetDof(); Vector loc_data; GetSubVector(vdofs, loc_data); if (doftrans) { doftrans->InvTransformPrimal(loc_data); } if (fe->GetRangeType() == FiniteElement::SCALAR) { Vector shape(dof); if (fe->GetMapType() == FiniteElement::VALUE) { fe->CalcShape(ip, shape); } else { fe->CalcPhysShape(T, shape); } int vdim = fes->GetVDim(); val.SetSize(vdim); for (int k = 0; k < vdim; k++) { val(k) = shape * (&loc_data[dof * k]); } } else { int spaceDim = fes->GetMesh()->SpaceDimension(); int vdim = std::max(spaceDim, fe->GetVDim()); DenseMatrix vshape(dof, vdim); fe->CalcVShape(T, vshape); val.SetSize(vdim); vshape.MultTranspose(loc_data, val); } } void GridFunction::GetVectorValues(ElementTransformation &T, const IntegrationRule &ir, DenseMatrix &vals, DenseMatrix *tr) const { if (tr) { T.Transform(ir, *tr); } const FiniteElement *FElem = fes->GetFE(T.ElementNo); int dof = FElem->GetDof(); Array vdofs; DofTransformation * doftrans = fes->GetElementVDofs(T.ElementNo, vdofs); Vector loc_data; GetSubVector(vdofs, loc_data); if (doftrans) { doftrans->InvTransformPrimal(loc_data); } int nip = ir.GetNPoints(); if (FElem->GetRangeType() == FiniteElement::SCALAR) { Vector shape(dof); int vdim = fes->GetVDim(); vals.SetSize(vdim, nip); for (int j = 0; j < nip; j++) { const IntegrationPoint &ip = ir.IntPoint(j); T.SetIntPoint(&ip); FElem->CalcPhysShape(T, shape); for (int k = 0; k < vdim; k++) { vals(k,j) = shape * (&loc_data[dof * k]); } } } else { int spaceDim = fes->GetMesh()->SpaceDimension(); int vdim = std::max(spaceDim, FElem->GetVDim()); DenseMatrix vshape(dof, vdim); vals.SetSize(vdim, nip); Vector val_j; for (int j = 0; j < nip; j++) { const IntegrationPoint &ip = ir.IntPoint(j); T.SetIntPoint(&ip); FElem->CalcVShape(T, vshape); vals.GetColumnReference(j, val_j); vshape.MultTranspose(loc_data, val_j); } } } int GridFunction::GetFaceVectorValues( int i, int side, const IntegrationRule &ir, DenseMatrix &vals, DenseMatrix &tr) const { int n, di; FaceElementTransformations *Transf; n = ir.GetNPoints(); IntegrationRule eir(n); // --- Transf = fes->GetMesh()->GetFaceElementTransformations(i, 0); if (side == 2) { if (Transf->Elem2No < 0 || fes->GetAttribute(Transf->Elem1No) <= fes->GetAttribute(Transf->Elem2No)) { di = 0; } else { di = 1; } } else { di = side; } if (di == 0) { Transf = fes->GetMesh()->GetFaceElementTransformations(i, 5); Transf->Loc1.Transform(ir, eir); GetVectorValues(*Transf->Elem1, eir, vals, &tr); } else { Transf = fes->GetMesh()->GetFaceElementTransformations(i, 10); Transf->Loc2.Transform(ir, eir); GetVectorValues(*Transf->Elem2, eir, vals, &tr); } return di; } void GridFunction::GetValuesFrom(const GridFunction &orig_func) { // Without averaging ... const FiniteElementSpace *orig_fes = orig_func.FESpace(); DofTransformation * doftrans; DofTransformation * orig_doftrans; Array vdofs, orig_vdofs; Vector shape, loc_values, orig_loc_values; int i, j, d, ne, dof, odof, vdim; ne = fes->GetNE(); vdim = fes->GetVDim(); for (i = 0; i < ne; i++) { doftrans = fes->GetElementVDofs(i, vdofs); orig_doftrans = orig_fes->GetElementVDofs(i, orig_vdofs); orig_func.GetSubVector(orig_vdofs, orig_loc_values); if (orig_doftrans) { orig_doftrans->InvTransformPrimal(orig_loc_values); } const FiniteElement *fe = fes->GetFE(i); const FiniteElement *orig_fe = orig_fes->GetFE(i); dof = fe->GetDof(); odof = orig_fe->GetDof(); loc_values.SetSize(dof * vdim); shape.SetSize(odof); const IntegrationRule &ir = fe->GetNodes(); for (j = 0; j < dof; j++) { const IntegrationPoint &ip = ir.IntPoint(j); orig_fe->CalcShape(ip, shape); for (d = 0; d < vdim; d++) { loc_values(d*dof+j) = shape * (&orig_loc_values[d * odof]); } } if (doftrans) { doftrans->TransformPrimal(loc_values); } SetSubVector(vdofs, loc_values); } } void GridFunction::GetBdrValuesFrom(const GridFunction &orig_func) { // Without averaging ... const FiniteElementSpace *orig_fes = orig_func.FESpace(); // DofTransformation * doftrans; // DofTransformation * orig_doftrans; Array vdofs, orig_vdofs; Vector shape, loc_values, loc_values_t, orig_loc_values, orig_loc_values_t; int i, j, d, nbe, dof, odof, vdim; nbe = fes->GetNBE(); vdim = fes->GetVDim(); for (i = 0; i < nbe; i++) { fes->GetBdrElementVDofs(i, vdofs); orig_fes->GetBdrElementVDofs(i, orig_vdofs); orig_func.GetSubVector(orig_vdofs, orig_loc_values); const FiniteElement *fe = fes->GetBE(i); const FiniteElement *orig_fe = orig_fes->GetBE(i); dof = fe->GetDof(); odof = orig_fe->GetDof(); loc_values.SetSize(dof * vdim); shape.SetSize(odof); const IntegrationRule &ir = fe->GetNodes(); for (j = 0; j < dof; j++) { const IntegrationPoint &ip = ir.IntPoint(j); orig_fe->CalcShape(ip, shape); for (d = 0; d < vdim; d++) { loc_values(d*dof+j) = shape * (&orig_loc_values[d * odof]); } } SetSubVector(vdofs, loc_values); } } void GridFunction::GetVectorFieldValues( int i, const IntegrationRule &ir, DenseMatrix &vals, DenseMatrix &tr, int comp) const { Array vdofs; ElementTransformation *transf; int d, k, n, sdim, dof; n = ir.GetNPoints(); DofTransformation * doftrans = fes->GetElementVDofs(i, vdofs); const FiniteElement *fe = fes->GetFE(i); dof = fe->GetDof(); sdim = fes->GetMesh()->SpaceDimension(); // int *dofs = &vdofs[comp*dof]; transf = fes->GetElementTransformation(i); transf->Transform(ir, tr); vals.SetSize(n, sdim); DenseMatrix vshape(dof, sdim); Vector loc_data, val(sdim); GetSubVector(vdofs, loc_data); if (doftrans) { doftrans->InvTransformPrimal(loc_data); } for (k = 0; k < n; k++) { const IntegrationPoint &ip = ir.IntPoint(k); transf->SetIntPoint(&ip); fe->CalcVShape(*transf, vshape); vshape.MultTranspose(loc_data, val); for (d = 0; d < sdim; d++) { vals(k,d) = val(d); } } } void GridFunction::ReorderByNodes() { if (fes->GetOrdering() == Ordering::byNODES) { return; } int i, j, k; int vdim = fes->GetVDim(); int ndofs = fes->GetNDofs(); double *temp = new double[size]; k = 0; for (j = 0; j < ndofs; j++) for (i = 0; i < vdim; i++) { temp[j+i*ndofs] = data[k++]; } for (i = 0; i < size; i++) { data[i] = temp[i]; } delete [] temp; } void GridFunction::GetVectorFieldNodalValues(Vector &val, int comp) const { int i, k; Array overlap(fes->GetNV()); Array vertices; DenseMatrix vals, tr; val.SetSize(overlap.Size()); overlap = 0; val = 0.0; comp--; for (i = 0; i < fes->GetNE(); i++) { const IntegrationRule *ir = Geometries.GetVertices(fes->GetFE(i)->GetGeomType()); fes->GetElementVertices(i, vertices); GetVectorFieldValues(i, *ir, vals, tr); for (k = 0; k < ir->GetNPoints(); k++) { val(vertices[k]) += vals(k, comp); overlap[vertices[k]]++; } } for (i = 0; i < overlap.Size(); i++) { val(i) /= overlap[i]; } } void GridFunction::ProjectVectorFieldOn(GridFunction &vec_field, int comp) { FiniteElementSpace *new_fes = vec_field.FESpace(); int d, i, k, ind, dof, sdim; Array overlap(new_fes->GetVSize()); Array new_vdofs; DenseMatrix vals, tr; sdim = fes->GetMesh()->SpaceDimension(); overlap = 0; vec_field = 0.0; for (i = 0; i < new_fes->GetNE(); i++) { const FiniteElement *fe = new_fes->GetFE(i); const IntegrationRule &ir = fe->GetNodes(); GetVectorFieldValues(i, ir, vals, tr, comp); new_fes->GetElementVDofs(i, new_vdofs); dof = fe->GetDof(); for (d = 0; d < sdim; d++) { for (k = 0; k < dof; k++) { if ( (ind=new_vdofs[dof*d+k]) < 0 ) { ind = -1-ind, vals(k, d) = - vals(k, d); } vec_field(ind) += vals(k, d); overlap[ind]++; } } } for (i = 0; i < overlap.Size(); i++) { vec_field(i) /= overlap[i]; } } void GridFunction::AccumulateAndCountDerivativeValues(int comp, int der_comp, GridFunction &der, Array &zones_per_dof) { FiniteElementSpace * der_fes = der.FESpace(); ElementTransformation * transf; zones_per_dof.SetSize(der_fes->GetVSize()); Array der_dofs, vdofs; DenseMatrix dshape, inv_jac; Vector pt_grad, loc_func; int i, j, k, dim, dof, der_dof, ind; double a; zones_per_dof = 0; der = 0.0; comp--; for (i = 0; i < der_fes->GetNE(); i++) { const FiniteElement *der_fe = der_fes->GetFE(i); const FiniteElement *fe = fes->GetFE(i); const IntegrationRule &ir = der_fe->GetNodes(); der_fes->GetElementDofs(i, der_dofs); fes->GetElementVDofs(i, vdofs); dim = fe->GetDim(); dof = fe->GetDof(); der_dof = der_fe->GetDof(); dshape.SetSize(dof, dim); inv_jac.SetSize(dim); pt_grad.SetSize(dim); loc_func.SetSize(dof); transf = fes->GetElementTransformation(i); for (j = 0; j < dof; j++) loc_func(j) = ( (ind=vdofs[comp*dof+j]) >= 0 ) ? (data[ind]) : (-data[-1-ind]); for (k = 0; k < der_dof; k++) { const IntegrationPoint &ip = ir.IntPoint(k); fe->CalcDShape(ip, dshape); dshape.MultTranspose(loc_func, pt_grad); transf->SetIntPoint(&ip); CalcInverse(transf->Jacobian(), inv_jac); a = 0.0; for (j = 0; j < dim; j++) { a += inv_jac(j, der_comp) * pt_grad(j); } der(der_dofs[k]) += a; zones_per_dof[der_dofs[k]]++; } } } void GridFunction::GetDerivative(int comp, int der_comp, GridFunction &der) { Array overlap; AccumulateAndCountDerivativeValues(comp, der_comp, der, overlap); for (int i = 0; i < overlap.Size(); i++) { der(i) /= overlap[i]; } } void GridFunction::GetVectorGradientHat( ElementTransformation &T, DenseMatrix &gh) const { const FiniteElement *FElem = fes->GetFE(T.ElementNo); int dim = FElem->GetDim(), dof = FElem->GetDof(); Vector loc_data; GetElementDofValues(T.ElementNo, loc_data); // assuming scalar FE int vdim = fes->GetVDim(); DenseMatrix dshape(dof, dim); FElem->CalcDShape(T.GetIntPoint(), dshape); gh.SetSize(vdim, dim); DenseMatrix loc_data_mat(loc_data.GetData(), dof, vdim); MultAtB(loc_data_mat, dshape, gh); } double GridFunction::GetDivergence(ElementTransformation &T) const { switch (T.ElementType) { case ElementTransformation::ELEMENT: { int elNo = T.ElementNo; const FiniteElement *fe = fes->GetFE(elNo); if (fe->GetRangeType() == FiniteElement::SCALAR) { MFEM_ASSERT(fe->GetMapType() == FiniteElement::VALUE, "invalid FE map type"); DenseMatrix grad_hat; GetVectorGradientHat(T, grad_hat); const DenseMatrix &Jinv = T.InverseJacobian(); double div_v = 0.0; for (int i = 0; i < Jinv.Width(); i++) { for (int j = 0; j < Jinv.Height(); j++) { div_v += grad_hat(i, j) * Jinv(j, i); } } return div_v; } else { // Assuming RT-type space Array dofs; DofTransformation * doftrans = fes->GetElementDofs(elNo, dofs); Vector loc_data, divshape(fe->GetDof()); GetSubVector(dofs, loc_data); if (doftrans) { doftrans->InvTransformPrimal(loc_data); } fe->CalcDivShape(T.GetIntPoint(), divshape); return (loc_data * divshape) / T.Weight(); } } break; case ElementTransformation::BDR_ELEMENT: { // In order to properly capture the derivative of the normal component // of the field (as well as the transverse divergence of the // tangential components) we must evaluate it in the neighboring // element. FaceElementTransformations * FET = fes->GetMesh()->GetBdrFaceTransformations(T.ElementNo); // Boundary elements and Boundary Faces may have different // orientations so adjust the integration point if necessary. int o = 0; if (fes->GetMesh()->Dimension() == 3) { int f; fes->GetMesh()->GetBdrElementFace(T.ElementNo, &f, &o); } IntegrationPoint fip; be_to_bfe(FET->GetGeometryType(), o, T.GetIntPoint(), fip); // Compute and set the point in element 1 from fip FET->SetAllIntPoints(&fip); ElementTransformation & T1 = FET->GetElement1Transformation(); return GetDivergence(T1); } break; case ElementTransformation::BDR_FACE: { // This must be a DG context so this dynamic cast must succeed. FaceElementTransformations * FET = dynamic_cast(&T); // Evaluate in neighboring element (the integration point in T1 should // have already been set). ElementTransformation & T1 = FET->GetElement1Transformation(); return GetDivergence(T1); } break; default: { MFEM_ABORT("GridFunction::GetDivergence: Unsupported element type \"" << T.ElementType << "\""); } } return 0.0; // never reached } void GridFunction::GetCurl(ElementTransformation &T, Vector &curl) const { switch (T.ElementType) { case ElementTransformation::ELEMENT: { int elNo = T.ElementNo; const FiniteElement *fe = fes->GetFE(elNo); if (fe->GetRangeType() == FiniteElement::SCALAR) { MFEM_ASSERT(fe->GetMapType() == FiniteElement::VALUE, "invalid FE map type"); DenseMatrix grad_hat; GetVectorGradientHat(T, grad_hat); const DenseMatrix &Jinv = T.InverseJacobian(); // Dimensions of grad are vdim x FElem->Dim DenseMatrix grad(grad_hat.Height(), Jinv.Width()); Mult(grad_hat, Jinv, grad); MFEM_ASSERT(grad.Height() == grad.Width(), ""); if (grad.Height() == 3) { curl.SetSize(3); curl(0) = grad(2,1) - grad(1,2); curl(1) = grad(0,2) - grad(2,0); curl(2) = grad(1,0) - grad(0,1); } else if (grad.Height() == 2) { curl.SetSize(1); curl(0) = grad(1,0) - grad(0,1); } } else { // Assuming ND-type space Array dofs; DofTransformation * doftrans = fes->GetElementDofs(elNo, dofs); Vector loc_data; GetSubVector(dofs, loc_data); if (doftrans) { doftrans->InvTransformPrimal(loc_data); } DenseMatrix curl_shape(fe->GetDof(), fe->GetCurlDim()); curl.SetSize(curl_shape.Width()); fe->CalcPhysCurlShape(T, curl_shape); curl_shape.MultTranspose(loc_data, curl); } } break; case ElementTransformation::BDR_ELEMENT: { // In order to capture the tangential components of the curl we // must evaluate it in the neighboring element. FaceElementTransformations * FET = fes->GetMesh()->GetBdrFaceTransformations(T.ElementNo); // Boundary elements and Boundary Faces may have different // orientations so adjust the integration point if necessary. int o = 0; if (fes->GetMesh()->Dimension() == 3) { int f; fes->GetMesh()->GetBdrElementFace(T.ElementNo, &f, &o); } IntegrationPoint fip; be_to_bfe(FET->GetGeometryType(), o, T.GetIntPoint(), fip); // Compute and set the point in element 1 from fip FET->SetAllIntPoints(&fip); ElementTransformation & T1 = FET->GetElement1Transformation(); GetCurl(T1, curl); } break; case ElementTransformation::BDR_FACE: { // This must be a DG context so this dynamic cast must succeed. FaceElementTransformations * FET = dynamic_cast(&T); // Evaluate in neighboring element (the integration point in T1 should // have already been set). ElementTransformation & T1 = FET->GetElement1Transformation(); GetCurl(T1, curl); } break; default: { MFEM_ABORT("GridFunction::GetCurl: Unsupported element type \"" << T.ElementType << "\""); } } } void GridFunction::GetGradient(ElementTransformation &T, Vector &grad) const { switch (T.ElementType) { case ElementTransformation::ELEMENT: { const FiniteElement *fe = fes->GetFE(T.ElementNo); MFEM_ASSERT(fe->GetMapType() == FiniteElement::VALUE, "invalid FE map type"); MFEM_ASSERT(fes->GetVDim() == 1, "Defined for scalar functions."); int spaceDim = fes->GetMesh()->SpaceDimension(); int dim = fe->GetDim(), dof = fe->GetDof(); DenseMatrix dshape(dof, dim); Vector lval, gh(dim); grad.SetSize(spaceDim); GetElementDofValues(T.ElementNo, lval); fe->CalcDShape(T.GetIntPoint(), dshape); dshape.MultTranspose(lval, gh); T.InverseJacobian().MultTranspose(gh, grad); } break; case ElementTransformation::BDR_ELEMENT: { // In order to properly capture the normal component of the gradient // as well as its tangential components we must evaluate it in the // neighboring element. FaceElementTransformations * FET = fes->GetMesh()->GetBdrFaceTransformations(T.ElementNo); // Boundary elements and Boundary Faces may have different // orientations so adjust the integration point if necessary. int o = 0; if (fes->GetMesh()->Dimension() == 3) { int f; fes->GetMesh()->GetBdrElementFace(T.ElementNo, &f, &o); } IntegrationPoint fip; be_to_bfe(FET->GetGeometryType(), o, T.GetIntPoint(), fip); // Compute and set the point in element 1 from fip FET->SetAllIntPoints(&fip); ElementTransformation & T1 = FET->GetElement1Transformation(); GetGradient(T1, grad); } break; case ElementTransformation::BDR_FACE: { // This must be a DG context so this dynamic cast must succeed. FaceElementTransformations * FET = dynamic_cast(&T); // Evaluate in neighboring element (the integration point in T1 should // have already been set). ElementTransformation & T1 = FET->GetElement1Transformation(); GetGradient(T1, grad); } break; default: { MFEM_ABORT("GridFunction::GetGradient: Unsupported element type \"" << T.ElementType << "\""); } } } void GridFunction::GetGradients(ElementTransformation &tr, const IntegrationRule &ir, DenseMatrix &grad) const { int elNo = tr.ElementNo; const FiniteElement *fe = fes->GetFE(elNo); MFEM_ASSERT(fe->GetMapType() == FiniteElement::VALUE, "invalid FE map type"); DenseMatrix dshape(fe->GetDof(), fe->GetDim()); Vector lval, gh(fe->GetDim()), gcol; GetElementDofValues(tr.ElementNo, lval); grad.SetSize(fe->GetDim(), ir.GetNPoints()); for (int i = 0; i < ir.GetNPoints(); i++) { const IntegrationPoint &ip = ir.IntPoint(i); fe->CalcDShape(ip, dshape); dshape.MultTranspose(lval, gh); tr.SetIntPoint(&ip); grad.GetColumnReference(i, gcol); const DenseMatrix &Jinv = tr.InverseJacobian(); Jinv.MultTranspose(gh, gcol); } } void GridFunction::GetVectorGradient( ElementTransformation &T, DenseMatrix &grad) const { switch (T.ElementType) { case ElementTransformation::ELEMENT: { MFEM_ASSERT(fes->GetFE(T.ElementNo)->GetMapType() == FiniteElement::VALUE, "invalid FE map type"); DenseMatrix grad_hat; GetVectorGradientHat(T, grad_hat); const DenseMatrix &Jinv = T.InverseJacobian(); grad.SetSize(grad_hat.Height(), Jinv.Width()); Mult(grad_hat, Jinv, grad); } break; case ElementTransformation::BDR_ELEMENT: { // In order to capture the normal component of the gradient we // must evaluate it in the neighboring element. FaceElementTransformations * FET = fes->GetMesh()->GetBdrFaceTransformations(T.ElementNo); // Boundary elements and Boundary Faces may have different // orientations so adjust the integration point if necessary. int o = 0; if (fes->GetMesh()->Dimension() == 3) { int f; fes->GetMesh()->GetBdrElementFace(T.ElementNo, &f, &o); } IntegrationPoint fip; be_to_bfe(FET->GetGeometryType(), o, T.GetIntPoint(), fip); // Compute and set the point in element 1 from fip FET->SetAllIntPoints(&fip); ElementTransformation & T1 = FET->GetElement1Transformation(); GetVectorGradient(T1, grad); } break; case ElementTransformation::BDR_FACE: { // This must be a DG context so this dynamic cast must succeed. FaceElementTransformations * FET = dynamic_cast(&T); // Evaluate in neighboring element (the integration point in T1 should // have already been set). ElementTransformation & T1 = FET->GetElement1Transformation(); GetVectorGradient(T1, grad); } break; default: { MFEM_ABORT("GridFunction::GetVectorGradient: " "Unsupported element type \"" << T.ElementType << "\""); } } } void GridFunction::GetElementAverages(GridFunction &avgs) const { MassIntegrator Mi; DenseMatrix loc_mass; DofTransformation * te_doftrans; DofTransformation * tr_doftrans; Array te_dofs, tr_dofs; Vector loc_avgs, loc_this; Vector int_psi(avgs.Size()); avgs = 0.0; int_psi = 0.0; for (int i = 0; i < fes->GetNE(); i++) { Mi.AssembleElementMatrix2(*fes->GetFE(i), *avgs.FESpace()->GetFE(i), *fes->GetElementTransformation(i), loc_mass); tr_doftrans = fes->GetElementDofs(i, tr_dofs); te_doftrans = avgs.FESpace()->GetElementDofs(i, te_dofs); GetSubVector(tr_dofs, loc_this); if (tr_doftrans) { tr_doftrans->InvTransformPrimal(loc_this); } loc_avgs.SetSize(te_dofs.Size()); loc_mass.Mult(loc_this, loc_avgs); if (te_doftrans) { te_doftrans->TransformPrimal(loc_avgs); } avgs.AddElementVector(te_dofs, loc_avgs); loc_this = 1.0; // assume the local basis for 'this' sums to 1 loc_mass.Mult(loc_this, loc_avgs); int_psi.AddElementVector(te_dofs, loc_avgs); } for (int i = 0; i < avgs.Size(); i++) { avgs(i) /= int_psi(i); } } void GridFunction::GetElementDofValues(int el, Vector &dof_vals) const { Array dof_idx; DofTransformation * doftrans = fes->GetElementVDofs(el, dof_idx); GetSubVector(dof_idx, dof_vals); if (doftrans) { doftrans->InvTransformPrimal(dof_vals); } } void GridFunction::ProjectGridFunction(const GridFunction &src) { Mesh *mesh = fes->GetMesh(); bool sameP = false; DenseMatrix P; if (!mesh->GetNE()) { return; } Geometry::Type geom, cached_geom = Geometry::INVALID; if (mesh->GetNumGeometries(mesh->Dimension()) == 1) { // Assuming that the projection matrix is the same for all elements sameP = true; fes->GetFE(0)->Project(*src.fes->GetFE(0), *mesh->GetElementTransformation(0), P); } const int vdim = fes->GetVDim(); MFEM_VERIFY(vdim == src.fes->GetVDim(), "incompatible vector dimensions!"); Array src_vdofs, dest_vdofs; Vector src_lvec, dest_lvec(vdim*P.Height()); for (int i = 0; i < mesh->GetNE(); i++) { // Assuming the projection matrix P depends only on the element geometry if ( !sameP && (geom = mesh->GetElementBaseGeometry(i)) != cached_geom ) { fes->GetFE(i)->Project(*src.fes->GetFE(i), *mesh->GetElementTransformation(i), P); dest_lvec.SetSize(vdim*P.Height()); cached_geom = geom; } DofTransformation * src_doftrans = src.fes->GetElementVDofs(i, src_vdofs); src.GetSubVector(src_vdofs, src_lvec); if (src_doftrans) { src_doftrans->InvTransformPrimal(src_lvec); } for (int vd = 0; vd < vdim; vd++) { P.Mult(&src_lvec[vd*P.Width()], &dest_lvec[vd*P.Height()]); } DofTransformation * doftrans = fes->GetElementVDofs(i, dest_vdofs); if (doftrans) { doftrans->TransformPrimal(dest_lvec); } SetSubVector(dest_vdofs, dest_lvec); } } void GridFunction::ImposeBounds(int i, const Vector &weights, const Vector &lo_, const Vector &hi_) { Array vdofs; DofTransformation * doftrans = fes->GetElementVDofs(i, vdofs); int size = vdofs.Size(); Vector vals, new_vals(size); GetSubVector(vdofs, vals); if (doftrans) { doftrans->InvTransformPrimal(vals); } MFEM_ASSERT(weights.Size() == size, "Different # of weights and dofs."); MFEM_ASSERT(lo_.Size() == size, "Different # of lower bounds and dofs."); MFEM_ASSERT(hi_.Size() == size, "Different # of upper bounds and dofs."); int max_iter = 30; double tol = 1.e-12; SLBQPOptimizer slbqp; slbqp.SetMaxIter(max_iter); slbqp.SetAbsTol(1.0e-18); slbqp.SetRelTol(tol); slbqp.SetBounds(lo_, hi_); slbqp.SetLinearConstraint(weights, weights * vals); slbqp.SetPrintLevel(0); // print messages only if not converged slbqp.Mult(vals, new_vals); if (doftrans) { doftrans->TransformPrimal(new_vals); } SetSubVector(vdofs, new_vals); } void GridFunction::ImposeBounds(int i, const Vector &weights, double min_, double max_) { Array vdofs; DofTransformation * doftrans = fes->GetElementVDofs(i, vdofs); int size = vdofs.Size(); Vector vals, new_vals(size); GetSubVector(vdofs, vals); if (doftrans) { doftrans->InvTransformPrimal(vals); } double max_val = vals.Max(); double min_val = vals.Min(); if (max_val <= min_) { new_vals = min_; if (doftrans) { doftrans->TransformPrimal(new_vals); } SetSubVector(vdofs, new_vals); return; } if (min_ <= min_val && max_val <= max_) { return; } Vector minv(size), maxv(size); minv = (min_ > min_val) ? min_ : min_val; maxv = (max_ < max_val) ? max_ : max_val; ImposeBounds(i, weights, minv, maxv); } void GridFunction::RestrictConforming() { const SparseMatrix *R = fes->GetRestrictionMatrix(); const Operator *P = fes->GetProlongationMatrix(); if (P && R) { Vector tmp(R->Height()); R->Mult(*this, tmp); P->Mult(tmp, *this); } } void GridFunction::GetNodalValues(Vector &nval, int vdim) const { int i, j; Array vertices; Array values; Array overlap(fes->GetNV()); nval.SetSize(fes->GetNV()); nval = 0.0; overlap = 0; for (i = 0; i < fes->GetNE(); i++) { fes->GetElementVertices(i, vertices); GetNodalValues(i, values, vdim); for (j = 0; j < vertices.Size(); j++) { nval(vertices[j]) += values[j]; overlap[vertices[j]]++; } } for (i = 0; i < overlap.Size(); i++) { nval(i) /= overlap[i]; } } void GridFunction::CountElementsPerVDof(Array &elem_per_vdof) const { elem_per_vdof.SetSize(fes->GetVSize()); elem_per_vdof = 0; Array vdofs; for (int i = 0; i < fes->GetNE(); i++) { fes->GetElementVDofs(i, vdofs); // Accumulate values in all dofs, count the zones. for (int j = 0; j < vdofs.Size(); j++) { elem_per_vdof[vdofs[j]]++; } } } void GridFunction::AccumulateAndCountZones(Coefficient &coeff, AvgType type, Array &zones_per_vdof) { zones_per_vdof.SetSize(fes->GetVSize()); zones_per_vdof = 0; // Local interpolation Array vdofs; Vector vals; *this = 0.0; HostReadWrite(); for (int i = 0; i < fes->GetNE(); i++) { fes->GetElementVDofs(i, vdofs); // Local interpolation of coeff. vals.SetSize(vdofs.Size()); fes->GetFE(i)->Project(coeff, *fes->GetElementTransformation(i), vals); // Accumulate values in all dofs, count the zones. for (int j = 0; j < vdofs.Size(); j++) { if (type == HARMONIC) { MFEM_VERIFY(vals[j] != 0.0, "Coefficient has zeros, harmonic avg is undefined!"); (*this)(vdofs[j]) += 1.0 / vals[j]; } else if (type == ARITHMETIC) { (*this)(vdofs[j]) += vals[j]; } else { MFEM_ABORT("Not implemented"); } zones_per_vdof[vdofs[j]]++; } } } void GridFunction::AccumulateAndCountZones(VectorCoefficient &vcoeff, AvgType type, Array &zones_per_vdof) { zones_per_vdof.SetSize(fes->GetVSize()); zones_per_vdof = 0; // Local interpolation Array vdofs; Vector vals; *this = 0.0; HostReadWrite(); for (int i = 0; i < fes->GetNE(); i++) { fes->GetElementVDofs(i, vdofs); // Local interpolation of coeff. vals.SetSize(vdofs.Size()); fes->GetFE(i)->Project(vcoeff, *fes->GetElementTransformation(i), vals); // Accumulate values in all dofs, count the zones. for (int j = 0; j < vdofs.Size(); j++) { int ldof; int isign; if (vdofs[j] < 0 ) { ldof = -1-vdofs[j]; isign = -1; } else { ldof = vdofs[j]; isign = 1; } if (type == HARMONIC) { MFEM_VERIFY(vals[j] != 0.0, "Coefficient has zeros, harmonic avg is undefined!"); (*this)(ldof) += isign / vals[j]; } else if (type == ARITHMETIC) { (*this)(ldof) += isign*vals[j]; } else { MFEM_ABORT("Not implemented"); } zones_per_vdof[ldof]++; } } } void GridFunction::AccumulateAndCountBdrValues( Coefficient *coeff[], VectorCoefficient *vcoeff, Array &attr, Array &values_counter) { int i, j, fdof, d, ind, vdim; double val; const FiniteElement *fe; ElementTransformation *transf; Array vdofs; Vector vc; values_counter.SetSize(Size()); values_counter = 0; vdim = fes->GetVDim(); HostReadWrite(); for (i = 0; i < fes->GetNBE(); i++) { if (attr[fes->GetBdrAttribute(i) - 1] == 0) { continue; } fe = fes->GetBE(i); fdof = fe->GetDof(); transf = fes->GetBdrElementTransformation(i); const IntegrationRule &ir = fe->GetNodes(); fes->GetBdrElementVDofs(i, vdofs); for (j = 0; j < fdof; j++) { const IntegrationPoint &ip = ir.IntPoint(j); transf->SetIntPoint(&ip); if (vcoeff) { vcoeff->Eval(vc, *transf, ip); } for (d = 0; d < vdim; d++) { if (!vcoeff && !coeff[d]) { continue; } val = vcoeff ? vc(d) : coeff[d]->Eval(*transf, ip); if ( (ind = vdofs[fdof*d+j]) < 0 ) { val = -val, ind = -1-ind; } if (++values_counter[ind] == 1) { (*this)(ind) = val; } else { (*this)(ind) += val; } } } } // In the case of partially conforming space, i.e. (fes->cP != NULL), we need // to set the values of all dofs on which the dofs set above depend. // Dependency is defined from the matrix A = cP.cR: dof i depends on dof j // iff A_ij != 0. It is sufficient to resolve just the first level of // dependency, since A is a projection matrix: A^n = A due to cR.cP = I. // Cases like these arise in 3D when boundary edges are constrained by // (depend on) internal faces/elements. We use the virtual method // GetBoundaryClosure from NCMesh to resolve the dependencies. if (fes->Nonconforming() && fes->GetMesh()->Dimension() == 3) { Vector vals; Mesh *mesh = fes->GetMesh(); NCMesh *ncmesh = mesh->ncmesh; Array bdr_edges, bdr_vertices; ncmesh->GetBoundaryClosure(attr, bdr_vertices, bdr_edges); for (i = 0; i < bdr_edges.Size(); i++) { int edge = bdr_edges[i]; fes->GetEdgeVDofs(edge, vdofs); if (vdofs.Size() == 0) { continue; } transf = mesh->GetEdgeTransformation(edge); transf->Attribute = -1; // TODO: set the boundary attribute fe = fes->GetEdgeElement(edge); if (!vcoeff) { vals.SetSize(fe->GetDof()); for (d = 0; d < vdim; d++) { if (!coeff[d]) { continue; } fe->Project(*coeff[d], *transf, vals); for (int k = 0; k < vals.Size(); k++) { ind = vdofs[d*vals.Size()+k]; if (++values_counter[ind] == 1) { (*this)(ind) = vals(k); } else { (*this)(ind) += vals(k); } } } } else // vcoeff != NULL { vals.SetSize(vdim*fe->GetDof()); fe->Project(*vcoeff, *transf, vals); for (int k = 0; k < vals.Size(); k++) { ind = vdofs[k]; if (++values_counter[ind] == 1) { (*this)(ind) = vals(k); } else { (*this)(ind) += vals(k); } } } } } } static void accumulate_dofs(const Array &dofs, const Vector &vals, Vector &gf, Array &values_counter) { for (int i = 0; i < dofs.Size(); i++) { int k = dofs[i]; double val = vals(i); if (k < 0) { k = -1 - k; val = -val; } if (++values_counter[k] == 1) { gf(k) = val; } else { gf(k) += val; } } } void GridFunction::AccumulateAndCountBdrTangentValues( VectorCoefficient &vcoeff, Array &bdr_attr, Array &values_counter) { const FiniteElement *fe; ElementTransformation *T; Array dofs; Vector lvec; values_counter.SetSize(Size()); values_counter = 0; HostReadWrite(); for (int i = 0; i < fes->GetNBE(); i++) { if (bdr_attr[fes->GetBdrAttribute(i)-1] == 0) { continue; } fe = fes->GetBE(i); T = fes->GetBdrElementTransformation(i); DofTransformation *dof_tr = fes->GetBdrElementDofs(i, dofs); lvec.SetSize(fe->GetDof()); fe->Project(vcoeff, *T, lvec); if (dof_tr) { dof_tr->TransformPrimal(lvec); } accumulate_dofs(dofs, lvec, *this, values_counter); } if (fes->Nonconforming() && fes->GetMesh()->Dimension() == 3) { Mesh *mesh = fes->GetMesh(); NCMesh *ncmesh = mesh->ncmesh; Array bdr_edges, bdr_vertices; ncmesh->GetBoundaryClosure(bdr_attr, bdr_vertices, bdr_edges); for (int i = 0; i < bdr_edges.Size(); i++) { int edge = bdr_edges[i]; fes->GetEdgeDofs(edge, dofs); if (dofs.Size() == 0) { continue; } T = mesh->GetEdgeTransformation(edge); T->Attribute = -1; // TODO: set the boundary attribute fe = fes->GetEdgeElement(edge); lvec.SetSize(fe->GetDof()); fe->Project(vcoeff, *T, lvec); accumulate_dofs(dofs, lvec, *this, values_counter); } } } void GridFunction::ComputeMeans(AvgType type, Array &zones_per_vdof) { switch (type) { case ARITHMETIC: for (int i = 0; i < size; i++) { const int nz = zones_per_vdof[i]; if (nz) { (*this)(i) /= nz; } } break; case HARMONIC: for (int i = 0; i < size; i++) { const int nz = zones_per_vdof[i]; if (nz) { (*this)(i) = nz/(*this)(i); } } break; default: MFEM_ABORT("invalid AvgType"); } } void GridFunction::ProjectDeltaCoefficient(DeltaCoefficient &delta_coeff, double &integral) { if (!fes->GetNE()) { integral = 0.0; return; } Mesh *mesh = fes->GetMesh(); const int dim = mesh->Dimension(); const double *center = delta_coeff.Center(); const double *vert = mesh->GetVertex(0); double min_dist, dist; int v_idx = 0; // find the vertex closest to the center of the delta function min_dist = Distance(center, vert, dim); for (int i = 0; i < mesh->GetNV(); i++) { vert = mesh->GetVertex(i); dist = Distance(center, vert, dim); if (dist < min_dist) { min_dist = dist; v_idx = i; } } (*this) = 0.0; integral = 0.0; if (min_dist >= delta_coeff.Tol()) { return; } // find the elements that have 'v_idx' as a vertex MassIntegrator Mi(*delta_coeff.Weight()); DenseMatrix loc_mass; Array vdofs, vertices; Vector vals, loc_mass_vals; for (int i = 0; i < mesh->GetNE(); i++) { mesh->GetElementVertices(i, vertices); for (int j = 0; j < vertices.Size(); j++) if (vertices[j] == v_idx) { const FiniteElement *fe = fes->GetFE(i); Mi.AssembleElementMatrix(*fe, *fes->GetElementTransformation(i), loc_mass); vals.SetSize(fe->GetDof()); fe->ProjectDelta(j, vals); const DofTransformation* const doftrans = fes->GetElementVDofs(i, vdofs); if (doftrans) { doftrans->TransformPrimal(vals); } SetSubVector(vdofs, vals); loc_mass_vals.SetSize(vals.Size()); loc_mass.Mult(vals, loc_mass_vals); integral += loc_mass_vals.Sum(); // partition of unity basis break; } } } void GridFunction::ProjectCoefficient(Coefficient &coeff) { DeltaCoefficient *delta_c = dynamic_cast(&coeff); DofTransformation * doftrans = NULL; if (delta_c == NULL) { Array vdofs; Vector vals; for (int i = 0; i < fes->GetNE(); i++) { doftrans = fes->GetElementVDofs(i, vdofs); vals.SetSize(vdofs.Size()); fes->GetFE(i)->Project(coeff, *fes->GetElementTransformation(i), vals); if (doftrans) { doftrans->TransformPrimal(vals); } SetSubVector(vdofs, vals); } } else { double integral; ProjectDeltaCoefficient(*delta_c, integral); (*this) *= (delta_c->Scale() / integral); } } void GridFunction::ProjectCoefficient( Coefficient &coeff, Array &dofs, int vd) { int el = -1; ElementTransformation *T = NULL; const FiniteElement *fe = NULL; fes->BuildDofToArrays(); // ensures GetElementForDof(), GetLocalDofForDof() initialized. for (int i = 0; i < dofs.Size(); i++) { int dof = dofs[i], j = fes->GetElementForDof(dof); if (el != j) { el = j; T = fes->GetElementTransformation(el); fe = fes->GetFE(el); } int vdof = fes->DofToVDof(dof, vd); int ld = fes->GetLocalDofForDof(dof); const IntegrationPoint &ip = fe->GetNodes().IntPoint(ld); T->SetIntPoint(&ip); (*this)(vdof) = coeff.Eval(*T, ip); } } void GridFunction::ProjectCoefficient(VectorCoefficient &vcoeff) { int i; Array vdofs; Vector vals; DofTransformation * doftrans = NULL; for (i = 0; i < fes->GetNE(); i++) { doftrans = fes->GetElementVDofs(i, vdofs); vals.SetSize(vdofs.Size()); fes->GetFE(i)->Project(vcoeff, *fes->GetElementTransformation(i), vals); if (doftrans) { doftrans->TransformPrimal(vals); } SetSubVector(vdofs, vals); } } void GridFunction::ProjectCoefficient( VectorCoefficient &vcoeff, Array &dofs) { int el = -1; ElementTransformation *T = NULL; const FiniteElement *fe = NULL; Vector val; fes->BuildDofToArrays(); // ensures GetElementForDof(), GetLocalDofForDof() initialized. for (int i = 0; i < dofs.Size(); i++) { int dof = dofs[i], j = fes->GetElementForDof(dof); if (el != j) { el = j; T = fes->GetElementTransformation(el); fe = fes->GetFE(el); } int ld = fes->GetLocalDofForDof(dof); const IntegrationPoint &ip = fe->GetNodes().IntPoint(ld); T->SetIntPoint(&ip); vcoeff.Eval(val, *T, ip); for (int vd = 0; vd < fes->GetVDim(); vd ++) { int vdof = fes->DofToVDof(dof, vd); (*this)(vdof) = val(vd); } } } void GridFunction::ProjectCoefficient(VectorCoefficient &vcoeff, int attribute) { int i; Array vdofs; Vector vals; DofTransformation * doftrans = NULL; for (i = 0; i < fes->GetNE(); i++) { if (fes->GetAttribute(i) != attribute) { continue; } doftrans = fes->GetElementVDofs(i, vdofs); vals.SetSize(vdofs.Size()); fes->GetFE(i)->Project(vcoeff, *fes->GetElementTransformation(i), vals); if (doftrans) { doftrans->TransformPrimal(vals); } SetSubVector(vdofs, vals); } } void GridFunction::ProjectCoefficient(Coefficient *coeff[]) { int i, j, fdof, d, ind, vdim; double val; const FiniteElement *fe; ElementTransformation *transf; // DofTransformation * doftrans; Array vdofs; vdim = fes->GetVDim(); for (i = 0; i < fes->GetNE(); i++) { fe = fes->GetFE(i); fdof = fe->GetDof(); transf = fes->GetElementTransformation(i); const IntegrationRule &ir = fe->GetNodes(); // doftrans = fes->GetElementVDofs(i, vdofs); fes->GetElementVDofs(i, vdofs); for (j = 0; j < fdof; j++) { const IntegrationPoint &ip = ir.IntPoint(j); transf->SetIntPoint(&ip); for (d = 0; d < vdim; d++) { if (!coeff[d]) { continue; } val = coeff[d]->Eval(*transf, ip); if ( (ind = vdofs[fdof*d+j]) < 0 ) { val = -val, ind = -1-ind; } (*this)(ind) = val; } } } } void GridFunction::ProjectDiscCoefficient(VectorCoefficient &coeff, Array &dof_attr) { Array vdofs; Vector vals; HostWrite(); // maximal element attribute for each dof dof_attr.SetSize(fes->GetVSize()); dof_attr = -1; // local projection for (int i = 0; i < fes->GetNE(); i++) { fes->GetElementVDofs(i, vdofs); vals.SetSize(vdofs.Size()); fes->GetFE(i)->Project(coeff, *fes->GetElementTransformation(i), vals); // the values in shared dofs are determined from the element with maximal // attribute int attr = fes->GetAttribute(i); for (int j = 0; j < vdofs.Size(); j++) { if (attr > dof_attr[vdofs[j]]) { (*this)(vdofs[j]) = vals[j]; dof_attr[vdofs[j]] = attr; } } } } void GridFunction::ProjectDiscCoefficient(VectorCoefficient &coeff) { Array dof_attr; ProjectDiscCoefficient(coeff, dof_attr); } void GridFunction::ProjectDiscCoefficient(Coefficient &coeff, AvgType type) { // Harmonic (x1 ... xn) = [ (1/x1 + ... + 1/xn) / n ]^-1. // Arithmetic(x1 ... xn) = (x1 + ... + xn) / n. Array zones_per_vdof; AccumulateAndCountZones(coeff, type, zones_per_vdof); ComputeMeans(type, zones_per_vdof); } void GridFunction::ProjectDiscCoefficient(VectorCoefficient &coeff, AvgType type) { Array zones_per_vdof; AccumulateAndCountZones(coeff, type, zones_per_vdof); ComputeMeans(type, zones_per_vdof); } void GridFunction::ProjectBdrCoefficient(VectorCoefficient &vcoeff, Array &attr) { Array values_counter; AccumulateAndCountBdrValues(NULL, &vcoeff, attr, values_counter); ComputeMeans(ARITHMETIC, values_counter); #ifdef MFEM_DEBUG Array ess_vdofs_marker; fes->GetEssentialVDofs(attr, ess_vdofs_marker); for (int i = 0; i < values_counter.Size(); i++) { MFEM_ASSERT(bool(values_counter[i]) == bool(ess_vdofs_marker[i]), "internal error"); } #endif } void GridFunction::ProjectBdrCoefficient(Coefficient *coeff[], Array &attr) { Array values_counter; // this->HostReadWrite(); // done inside the next call AccumulateAndCountBdrValues(coeff, NULL, attr, values_counter); ComputeMeans(ARITHMETIC, values_counter); #ifdef MFEM_DEBUG Array ess_vdofs_marker(Size()); ess_vdofs_marker = 0; Array component_dof_marker; for (int i = 0; i < fes->GetVDim(); i++) { if (!coeff[i]) { continue; } fes->GetEssentialVDofs(attr, component_dof_marker,i); for (int j = 0; j &bdr_attr) { #if 0 // implementation for the case when the face dofs are integrals of the // normal component. const FiniteElement *fe; ElementTransformation *T; Array dofs; int dim = vcoeff.GetVDim(); Vector vc(dim), nor(dim), lvec, shape; for (int i = 0; i < fes->GetNBE(); i++) { if (bdr_attr[fes->GetBdrAttribute(i)-1] == 0) { continue; } fe = fes->GetBE(i); T = fes->GetBdrElementTransformation(i); int intorder = 2*fe->GetOrder(); // !!! const IntegrationRule &ir = IntRules.Get(fe->GetGeomType(), intorder); int nd = fe->GetDof(); lvec.SetSize(nd); shape.SetSize(nd); lvec = 0.0; for (int j = 0; j < ir.GetNPoints(); j++) { const IntegrationPoint &ip = ir.IntPoint(j); T->SetIntPoint(&ip); vcoeff.Eval(vc, *T, ip); CalcOrtho(T->Jacobian(), nor); fe->CalcShape(ip, shape); lvec.Add(ip.weight * (vc * nor), shape); } fes->GetBdrElementDofs(i, dofs); SetSubVector(dofs, lvec); } #else // implementation for the case when the face dofs are scaled point // values of the normal component. const FiniteElement *fe; ElementTransformation *T; Array dofs; int dim = vcoeff.GetVDim(); Vector vc(dim), nor(dim), lvec; for (int i = 0; i < fes->GetNBE(); i++) { if (bdr_attr[fes->GetBdrAttribute(i)-1] == 0) { continue; } fe = fes->GetBE(i); T = fes->GetBdrElementTransformation(i); const IntegrationRule &ir = fe->GetNodes(); lvec.SetSize(fe->GetDof()); for (int j = 0; j < ir.GetNPoints(); j++) { const IntegrationPoint &ip = ir.IntPoint(j); T->SetIntPoint(&ip); vcoeff.Eval(vc, *T, ip); CalcOrtho(T->Jacobian(), nor); lvec(j) = (vc * nor); } const DofTransformation* const doftrans = fes->GetBdrElementDofs(i, dofs); if (doftrans) { doftrans->TransformPrimal(lvec); } SetSubVector(dofs, lvec); } #endif } void GridFunction::ProjectBdrCoefficientTangent( VectorCoefficient &vcoeff, Array &bdr_attr) { Array values_counter; AccumulateAndCountBdrTangentValues(vcoeff, bdr_attr, values_counter); ComputeMeans(ARITHMETIC, values_counter); #ifdef MFEM_DEBUG Array ess_vdofs_marker; fes->GetEssentialVDofs(bdr_attr, ess_vdofs_marker); for (int i = 0; i < values_counter.Size(); i++) { MFEM_ASSERT(bool(values_counter[i]) == bool(ess_vdofs_marker[i]), "internal error"); } #endif } double GridFunction::ComputeL2Error( Coefficient *exsol[], const IntegrationRule *irs[], const Array *elems) const { double error = 0.0, a; const FiniteElement *fe; ElementTransformation *transf; Vector shape; Array vdofs; int fdof, d, i, intorder, j, k; for (i = 0; i < fes->GetNE(); i++) { if (elems != NULL && (*elems)[i] == 0) { continue; } fe = fes->GetFE(i); fdof = fe->GetDof(); transf = fes->GetElementTransformation(i); shape.SetSize(fdof); intorder = 2*fe->GetOrder() + 3; // <---------- const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } fes->GetElementVDofs(i, vdofs); for (j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); fe->CalcShape(ip, shape); for (d = 0; d < fes->GetVDim(); d++) { a = 0; for (k = 0; k < fdof; k++) if (vdofs[fdof*d+k] >= 0) { a += (*this)(vdofs[fdof*d+k]) * shape(k); } else { a -= (*this)(-1-vdofs[fdof*d+k]) * shape(k); } transf->SetIntPoint(&ip); a -= exsol[d]->Eval(*transf, ip); error += ip.weight * transf->Weight() * a * a; } } } return (error < 0.0) ? -sqrt(-error) : sqrt(error); } double GridFunction::ComputeL2Error( VectorCoefficient &exsol, const IntegrationRule *irs[], const Array *elems) const { double error = 0.0; const FiniteElement *fe; ElementTransformation *T; DenseMatrix vals, exact_vals; Vector loc_errs; for (int i = 0; i < fes->GetNE(); i++) { if (elems != NULL && (*elems)[i] == 0) { continue; } fe = fes->GetFE(i); int intorder = 2*fe->GetOrder() + 3; // <---------- const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } T = fes->GetElementTransformation(i); GetVectorValues(*T, *ir, vals); exsol.Eval(exact_vals, *T, *ir); vals -= exact_vals; loc_errs.SetSize(vals.Width()); vals.Norm2(loc_errs); for (int j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); T->SetIntPoint(&ip); error += ip.weight * T->Weight() * (loc_errs(j) * loc_errs(j)); } } return (error < 0.0) ? -sqrt(-error) : sqrt(error); } double GridFunction::ComputeElementGradError(int ielem, VectorCoefficient *exgrad, const IntegrationRule *irs[]) const { double error = 0.0; const FiniteElement *fe; ElementTransformation *Tr; Array dofs; Vector grad; int intorder; int dim = fes->GetMesh()->SpaceDimension(); Vector vec(dim); fe = fes->GetFE(ielem); Tr = fes->GetElementTransformation(ielem); intorder = 2*fe->GetOrder() + 3; // <-------- const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } fes->GetElementDofs(ielem, dofs); for (int j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); Tr->SetIntPoint(&ip); GetGradient(*Tr,grad); exgrad->Eval(vec,*Tr,ip); vec-=grad; error += ip.weight * Tr->Weight() * (vec * vec); } return (error < 0.0) ? -sqrt(-error) : sqrt(error); } double GridFunction::ComputeGradError(VectorCoefficient *exgrad, const IntegrationRule *irs[]) const { double error = 0.0; const FiniteElement *fe; ElementTransformation *Tr; Array dofs; Vector grad; int intorder; int dim = fes->GetMesh()->SpaceDimension(); Vector vec(dim); for (int i = 0; i < fes->GetNE(); i++) { fe = fes->GetFE(i); Tr = fes->GetElementTransformation(i); intorder = 2*fe->GetOrder() + 3; // <-------- const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } fes->GetElementDofs(i, dofs); for (int j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); Tr->SetIntPoint(&ip); GetGradient(*Tr,grad); exgrad->Eval(vec,*Tr,ip); vec-=grad; error += ip.weight * Tr->Weight() * (vec * vec); } } return (error < 0.0) ? -sqrt(-error) : sqrt(error); } double GridFunction::ComputeCurlError(VectorCoefficient *excurl, const IntegrationRule *irs[]) const { double error = 0.0; const FiniteElement *fe; ElementTransformation *Tr; Array dofs; int intorder; int n = CurlDim(); Vector curl(n); Vector vec(n); for (int i = 0; i < fes->GetNE(); i++) { fe = fes->GetFE(i); Tr = fes->GetElementTransformation(i); intorder = 2*fe->GetOrder() + 3; const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } fes->GetElementDofs(i, dofs); for (int j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); Tr->SetIntPoint(&ip); GetCurl(*Tr,curl); excurl->Eval(vec,*Tr,ip); vec-=curl; error += ip.weight * Tr->Weight() * ( vec * vec ); } } return (error < 0.0) ? -sqrt(-error) : sqrt(error); } double GridFunction::ComputeDivError( Coefficient *exdiv, const IntegrationRule *irs[]) const { double error = 0.0, a; const FiniteElement *fe; ElementTransformation *Tr; Array dofs; int intorder; for (int i = 0; i < fes->GetNE(); i++) { fe = fes->GetFE(i); Tr = fes->GetElementTransformation(i); intorder = 2*fe->GetOrder() + 3; const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } fes->GetElementDofs(i, dofs); for (int j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); Tr->SetIntPoint (&ip); a = GetDivergence(*Tr) - exdiv->Eval(*Tr, ip); error += ip.weight * Tr->Weight() * a * a; } } return (error < 0.0) ? -sqrt(-error) : sqrt(error); } double GridFunction::ComputeDGFaceJumpError(Coefficient *exsol, Coefficient *ell_coeff, class JumpScaling jump_scaling, const IntegrationRule *irs[]) const { int fdof, intorder, k; Mesh *mesh; const FiniteElement *fe; ElementTransformation *transf; FaceElementTransformations *face_elem_transf; Vector shape, el_dofs, err_val, ell_coeff_val; Array vdofs; IntegrationPoint eip; double error = 0.0; mesh = fes->GetMesh(); for (int i = 0; i < mesh->GetNumFaces(); i++) { int i1, i2; mesh->GetFaceElements(i, &i1, &i2); double h = mesh->GetElementSize(i1); intorder = fes->GetFE(i1)->GetOrder(); if (i2 >= 0) { if ( (k = fes->GetFE(i2)->GetOrder()) > intorder ) { intorder = k; } h = std::min(h, mesh->GetElementSize(i2)); } int p = intorder; intorder = 2 * intorder; // <------------- face_elem_transf = mesh->GetFaceElementTransformations(i, 5); const IntegrationRule *ir; if (irs) { ir = irs[face_elem_transf->GetGeometryType()]; } else { ir = &(IntRules.Get(face_elem_transf->GetGeometryType(), intorder)); } err_val.SetSize(ir->GetNPoints()); ell_coeff_val.SetSize(ir->GetNPoints()); // side 1 transf = face_elem_transf->Elem1; fe = fes->GetFE(i1); fdof = fe->GetDof(); fes->GetElementVDofs(i1, vdofs); shape.SetSize(fdof); el_dofs.SetSize(fdof); for (k = 0; k < fdof; k++) if (vdofs[k] >= 0) { el_dofs(k) = (*this)(vdofs[k]); } else { el_dofs(k) = - (*this)(-1-vdofs[k]); } for (int j = 0; j < ir->GetNPoints(); j++) { face_elem_transf->Loc1.Transform(ir->IntPoint(j), eip); fe->CalcShape(eip, shape); transf->SetIntPoint(&eip); ell_coeff_val(j) = ell_coeff->Eval(*transf, eip); err_val(j) = exsol->Eval(*transf, eip) - (shape * el_dofs); } if (i2 >= 0) { // side 2 face_elem_transf = mesh->GetFaceElementTransformations(i, 10); transf = face_elem_transf->Elem2; fe = fes->GetFE(i2); fdof = fe->GetDof(); fes->GetElementVDofs(i2, vdofs); shape.SetSize(fdof); el_dofs.SetSize(fdof); for (k = 0; k < fdof; k++) if (vdofs[k] >= 0) { el_dofs(k) = (*this)(vdofs[k]); } else { el_dofs(k) = - (*this)(-1-vdofs[k]); } for (int j = 0; j < ir->GetNPoints(); j++) { face_elem_transf->Loc2.Transform(ir->IntPoint(j), eip); fe->CalcShape(eip, shape); transf->SetIntPoint(&eip); ell_coeff_val(j) += ell_coeff->Eval(*transf, eip); ell_coeff_val(j) *= 0.5; err_val(j) -= (exsol->Eval(*transf, eip) - (shape * el_dofs)); } } face_elem_transf = mesh->GetFaceElementTransformations(i, 16); transf = face_elem_transf; for (int j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); transf->SetIntPoint(&ip); double nu = jump_scaling.Eval(h, p); error += (ip.weight * nu * ell_coeff_val(j) * transf->Weight() * err_val(j) * err_val(j)); } } return (error < 0.0) ? -sqrt(-error) : sqrt(error); } double GridFunction::ComputeDGFaceJumpError(Coefficient *exsol, Coefficient *ell_coeff, double Nu, const IntegrationRule *irs[]) const { return ComputeDGFaceJumpError( exsol, ell_coeff, {Nu, JumpScaling::ONE_OVER_H}, irs); } double GridFunction::ComputeH1Error(Coefficient *exsol, VectorCoefficient *exgrad, Coefficient *ell_coef, double Nu, int norm_type) const { double error1 = 0.0; double error2 = 0.0; if (norm_type & 1) { error1 = GridFunction::ComputeGradError(exgrad); } if (norm_type & 2) { error2 = GridFunction::ComputeDGFaceJumpError( exsol, ell_coef, {Nu, JumpScaling::ONE_OVER_H}); } return sqrt(error1 * error1 + error2 * error2); } double GridFunction::ComputeH1Error(Coefficient *exsol, VectorCoefficient *exgrad, const IntegrationRule *irs[]) const { double L2error = GridFunction::ComputeLpError(2.0,*exsol,NULL,irs); double GradError = GridFunction::ComputeGradError(exgrad,irs); return sqrt(L2error*L2error + GradError*GradError); } double GridFunction::ComputeHDivError(VectorCoefficient *exsol, Coefficient *exdiv, const IntegrationRule *irs[]) const { double L2error = GridFunction::ComputeLpError(2.0,*exsol,NULL,NULL,irs); double DivError = GridFunction::ComputeDivError(exdiv,irs); return sqrt(L2error*L2error + DivError*DivError); } double GridFunction::ComputeHCurlError(VectorCoefficient *exsol, VectorCoefficient *excurl, const IntegrationRule *irs[]) const { double L2error = GridFunction::ComputeLpError(2.0,*exsol,NULL,NULL,irs); double CurlError = GridFunction::ComputeCurlError(excurl,irs); return sqrt(L2error*L2error + CurlError*CurlError); } double GridFunction::ComputeMaxError( Coefficient *exsol[], const IntegrationRule *irs[]) const { double error = 0.0, a; const FiniteElement *fe; ElementTransformation *transf; Vector shape; Array vdofs; int fdof, d, i, intorder, j, k; for (i = 0; i < fes->GetNE(); i++) { fe = fes->GetFE(i); fdof = fe->GetDof(); transf = fes->GetElementTransformation(i); shape.SetSize(fdof); intorder = 2*fe->GetOrder() + 3; // <---------- const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } fes->GetElementVDofs(i, vdofs); for (j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); fe->CalcShape(ip, shape); transf->SetIntPoint(&ip); for (d = 0; d < fes->GetVDim(); d++) { a = 0; for (k = 0; k < fdof; k++) if (vdofs[fdof*d+k] >= 0) { a += (*this)(vdofs[fdof*d+k]) * shape(k); } else { a -= (*this)(-1-vdofs[fdof*d+k]) * shape(k); } a -= exsol[d]->Eval(*transf, ip); a = fabs(a); if (error < a) { error = a; } } } } return error; } double GridFunction::ComputeW11Error( Coefficient *exsol, VectorCoefficient *exgrad, int norm_type, const Array *elems, const IntegrationRule *irs[]) const { // assuming vdim is 1 int i, fdof, dim, intorder, j, k; Mesh *mesh; const FiniteElement *fe; ElementTransformation *transf; Vector e_grad, a_grad, shape, el_dofs, err_val, ell_coeff_val; DenseMatrix dshape, dshapet, Jinv; Array vdofs; double a, error = 0.0; mesh = fes->GetMesh(); dim = mesh->Dimension(); e_grad.SetSize(dim); a_grad.SetSize(dim); Jinv.SetSize(dim); if (norm_type & 1) // L_1 norm for (i = 0; i < mesh->GetNE(); i++) { if (elems != NULL && (*elems)[i] == 0) { continue; } fe = fes->GetFE(i); fdof = fe->GetDof(); transf = fes->GetElementTransformation(i); el_dofs.SetSize(fdof); shape.SetSize(fdof); intorder = 2*fe->GetOrder() + 1; // <---------- const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } fes->GetElementVDofs(i, vdofs); for (k = 0; k < fdof; k++) if (vdofs[k] >= 0) { el_dofs(k) = (*this)(vdofs[k]); } else { el_dofs(k) = -(*this)(-1-vdofs[k]); } for (j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); fe->CalcShape(ip, shape); transf->SetIntPoint(&ip); a = (el_dofs * shape) - (exsol->Eval(*transf, ip)); error += ip.weight * transf->Weight() * fabs(a); } } if (norm_type & 2) // W^1_1 seminorm for (i = 0; i < mesh->GetNE(); i++) { if (elems != NULL && (*elems)[i] == 0) { continue; } fe = fes->GetFE(i); fdof = fe->GetDof(); transf = mesh->GetElementTransformation(i); el_dofs.SetSize(fdof); dshape.SetSize(fdof, dim); dshapet.SetSize(fdof, dim); intorder = 2*fe->GetOrder() + 1; // <---------- const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } fes->GetElementVDofs(i, vdofs); for (k = 0; k < fdof; k++) if (vdofs[k] >= 0) { el_dofs(k) = (*this)(vdofs[k]); } else { el_dofs(k) = -(*this)(-1-vdofs[k]); } for (j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); fe->CalcDShape(ip, dshape); transf->SetIntPoint(&ip); exgrad->Eval(e_grad, *transf, ip); CalcInverse(transf->Jacobian(), Jinv); Mult(dshape, Jinv, dshapet); dshapet.MultTranspose(el_dofs, a_grad); e_grad -= a_grad; error += ip.weight * transf->Weight() * e_grad.Norml1(); } } return error; } double GridFunction::ComputeLpError(const double p, Coefficient &exsol, Coefficient *weight, const IntegrationRule *irs[], const Array *elems) const { double error = 0.0; const FiniteElement *fe; ElementTransformation *T; Vector vals; for (int i = 0; i < fes->GetNE(); i++) { if (elems != NULL && (*elems)[i] == 0) { continue; } fe = fes->GetFE(i); const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { int intorder = 2*fe->GetOrder() + 3; // <---------- ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } GetValues(i, *ir, vals); T = fes->GetElementTransformation(i); for (int j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); T->SetIntPoint(&ip); double diff = fabs(vals(j) - exsol.Eval(*T, ip)); if (p < infinity()) { diff = pow(diff, p); if (weight) { diff *= weight->Eval(*T, ip); } error += ip.weight * T->Weight() * diff; } else { if (weight) { diff *= weight->Eval(*T, ip); } error = std::max(error, diff); } } } if (p < infinity()) { // negative quadrature weights may cause the error to be negative if (error < 0.) { error = -pow(-error, 1./p); } else { error = pow(error, 1./p); } } return error; } void GridFunction::ComputeElementLpErrors(const double p, Coefficient &exsol, Vector &error, Coefficient *weight, const IntegrationRule *irs[]) const { MFEM_ASSERT(error.Size() == fes->GetNE(), "Incorrect size for result vector"); error = 0.0; const FiniteElement *fe; ElementTransformation *T; Vector vals; for (int i = 0; i < fes->GetNE(); i++) { fe = fes->GetFE(i); const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { int intorder = 2*fe->GetOrder() + 3; // <---------- ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } GetValues(i, *ir, vals); T = fes->GetElementTransformation(i); for (int j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); T->SetIntPoint(&ip); double diff = fabs(vals(j) - exsol.Eval(*T, ip)); if (p < infinity()) { diff = pow(diff, p); if (weight) { diff *= weight->Eval(*T, ip); } error[i] += ip.weight * T->Weight() * diff; } else { if (weight) { diff *= weight->Eval(*T, ip); } error[i] = std::max(error[i], diff); } } if (p < infinity()) { // negative quadrature weights may cause the error to be negative if (error[i] < 0.) { error[i] = -pow(-error[i], 1./p); } else { error[i] = pow(error[i], 1./p); } } } } double GridFunction::ComputeLpError(const double p, VectorCoefficient &exsol, Coefficient *weight, VectorCoefficient *v_weight, const IntegrationRule *irs[]) const { double error = 0.0; const FiniteElement *fe; ElementTransformation *T; DenseMatrix vals, exact_vals; Vector loc_errs; for (int i = 0; i < fes->GetNE(); i++) { fe = fes->GetFE(i); const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { int intorder = 2*fe->GetOrder() + 3; // <---------- ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } T = fes->GetElementTransformation(i); GetVectorValues(*T, *ir, vals); exsol.Eval(exact_vals, *T, *ir); vals -= exact_vals; loc_errs.SetSize(vals.Width()); if (!v_weight) { // compute the lengths of the errors at the integration points // thus the vector norm is rotationally invariant vals.Norm2(loc_errs); } else { v_weight->Eval(exact_vals, *T, *ir); // column-wise dot product of the vector error (in vals) and the // vector weight (in exact_vals) for (int j = 0; j < vals.Width(); j++) { double errj = 0.0; for (int d = 0; d < vals.Height(); d++) { errj += vals(d,j)*exact_vals(d,j); } loc_errs(j) = fabs(errj); } } for (int j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); T->SetIntPoint(&ip); double errj = loc_errs(j); if (p < infinity()) { errj = pow(errj, p); if (weight) { errj *= weight->Eval(*T, ip); } error += ip.weight * T->Weight() * errj; } else { if (weight) { errj *= weight->Eval(*T, ip); } error = std::max(error, errj); } } } if (p < infinity()) { // negative quadrature weights may cause the error to be negative if (error < 0.) { error = -pow(-error, 1./p); } else { error = pow(error, 1./p); } } return error; } void GridFunction::ComputeElementLpErrors(const double p, VectorCoefficient &exsol, Vector &error, Coefficient *weight, VectorCoefficient *v_weight, const IntegrationRule *irs[]) const { MFEM_ASSERT(error.Size() == fes->GetNE(), "Incorrect size for result vector"); error = 0.0; const FiniteElement *fe; ElementTransformation *T; DenseMatrix vals, exact_vals; Vector loc_errs; for (int i = 0; i < fes->GetNE(); i++) { fe = fes->GetFE(i); const IntegrationRule *ir; if (irs) { ir = irs[fe->GetGeomType()]; } else { int intorder = 2*fe->GetOrder() + 3; // <---------- ir = &(IntRules.Get(fe->GetGeomType(), intorder)); } T = fes->GetElementTransformation(i); GetVectorValues(*T, *ir, vals); exsol.Eval(exact_vals, *T, *ir); vals -= exact_vals; loc_errs.SetSize(vals.Width()); if (!v_weight) { // compute the lengths of the errors at the integration points thus the // vector norm is rotationally invariant vals.Norm2(loc_errs); } else { v_weight->Eval(exact_vals, *T, *ir); // column-wise dot product of the vector error (in vals) and the vector // weight (in exact_vals) for (int j = 0; j < vals.Width(); j++) { double errj = 0.0; for (int d = 0; d < vals.Height(); d++) { errj += vals(d,j)*exact_vals(d,j); } loc_errs(j) = fabs(errj); } } for (int j = 0; j < ir->GetNPoints(); j++) { const IntegrationPoint &ip = ir->IntPoint(j); T->SetIntPoint(&ip); double errj = loc_errs(j); if (p < infinity()) { errj = pow(errj, p); if (weight) { errj *= weight->Eval(*T, ip); } error[i] += ip.weight * T->Weight() * errj; } else { if (weight) { errj *= weight->Eval(*T, ip); } error[i] = std::max(error[i], errj); } } if (p < infinity()) { // negative quadrature weights may cause the error to be negative if (error[i] < 0.) { error[i] = -pow(-error[i], 1./p); } else { error[i] = pow(error[i], 1./p); } } } } GridFunction & GridFunction::operator=(double value) { Vector::operator=(value); return *this; } GridFunction & GridFunction::operator=(const Vector &v) { MFEM_ASSERT(fes && v.Size() == fes->GetVSize(), ""); Vector::operator=(v); return *this; } void GridFunction::Save(std::ostream &os) const { fes->Save(os); os << '\n'; #if 0 // Testing: write NURBS GridFunctions using "NURBS_patches" format. if (fes->GetNURBSext()) { os << "NURBS_patches\n"; fes->GetNURBSext()->PrintSolution(*this, os); os.flush(); return; } #endif if (fes->GetOrdering() == Ordering::byNODES) { Vector::Print(os, 1); } else { Vector::Print(os, fes->GetVDim()); } os.flush(); } void GridFunction::Save(const char *fname, int precision) const { ofstream ofs(fname); ofs.precision(precision); Save(ofs); } #ifdef MFEM_USE_ADIOS2 void GridFunction::Save(adios2stream &os, const std::string& variable_name, const adios2stream::data_type type) const { os.Save(*this, variable_name, type); } #endif void GridFunction::SaveVTK(std::ostream &os, const std::string &field_name, int ref) { Mesh *mesh = fes->GetMesh(); RefinedGeometry *RefG; Vector val; DenseMatrix vval, pmat; int vec_dim = VectorDim(); if (vec_dim == 1) { // scalar data os << "SCALARS " << field_name << " double 1\n" << "LOOKUP_TABLE default\n"; for (int i = 0; i < mesh->GetNE(); i++) { RefG = GlobGeometryRefiner.Refine( mesh->GetElementBaseGeometry(i), ref, 1); GetValues(i, RefG->RefPts, val, pmat); for (int j = 0; j < val.Size(); j++) { os << val(j) << '\n'; } } } else if ( (vec_dim == 2 || vec_dim == 3) && mesh->SpaceDimension() > 1) { // vector data os << "VECTORS " << field_name << " double\n"; for (int i = 0; i < mesh->GetNE(); i++) { RefG = GlobGeometryRefiner.Refine( mesh->GetElementBaseGeometry(i), ref, 1); // GetVectorValues(i, RefG->RefPts, vval, pmat); ElementTransformation * T = mesh->GetElementTransformation(i); GetVectorValues(*T, RefG->RefPts, vval, &pmat); for (int j = 0; j < vval.Width(); j++) { os << vval(0, j) << ' ' << vval(1, j) << ' '; if (vval.Height() == 2) { os << 0.0; } else { os << vval(2, j); } os << '\n'; } } } else { // other data: save the components as separate scalars for (int vd = 0; vd < vec_dim; vd++) { os << "SCALARS " << field_name << vd << " double 1\n" << "LOOKUP_TABLE default\n"; for (int i = 0; i < mesh->GetNE(); i++) { RefG = GlobGeometryRefiner.Refine( mesh->GetElementBaseGeometry(i), ref, 1); GetValues(i, RefG->RefPts, val, pmat, vd + 1); for (int j = 0; j < val.Size(); j++) { os << val(j) << '\n'; } } } } os.flush(); } void GridFunction::SaveSTLTri(std::ostream &os, double p1[], double p2[], double p3[]) { double v1[3] = { p2[0] - p1[0], p2[1] - p1[1], p2[2] - p1[2] }; double v2[3] = { p3[0] - p1[0], p3[1] - p1[1], p3[2] - p1[2] }; double n[] = { v1[1] * v2[2] - v1[2] * v2[1], v1[2] * v2[0] - v1[0] * v2[2], v1[0] * v2[1] - v1[1] * v2[0] }; double rl = 1.0 / sqrt(n[0] * n[0] + n[1] * n[1] + n[2] * n[2]); n[0] *= rl; n[1] *= rl; n[2] *= rl; os << " facet normal " << n[0] << ' ' << n[1] << ' ' << n[2] << "\n outer loop" << "\n vertex " << p1[0] << ' ' << p1[1] << ' ' << p1[2] << "\n vertex " << p2[0] << ' ' << p2[1] << ' ' << p2[2] << "\n vertex " << p3[0] << ' ' << p3[1] << ' ' << p3[2] << "\n endloop\n endfacet\n"; } void GridFunction::SaveSTL(std::ostream &os, int TimesToRefine) { Mesh *mesh = fes->GetMesh(); if (mesh->Dimension() != 2) { return; } int i, j, k, l, n; DenseMatrix pointmat; Vector values; RefinedGeometry * RefG; double pts[4][3], bbox[3][2]; os << "solid GridFunction\n"; bbox[0][0] = bbox[0][1] = bbox[1][0] = bbox[1][1] = bbox[2][0] = bbox[2][1] = 0.0; for (i = 0; i < mesh->GetNE(); i++) { Geometry::Type geom = mesh->GetElementBaseGeometry(i); RefG = GlobGeometryRefiner.Refine(geom, TimesToRefine); GetValues(i, RefG->RefPts, values, pointmat); Array &RG = RefG->RefGeoms; n = Geometries.NumBdr(geom); for (k = 0; k < RG.Size()/n; k++) { for (j = 0; j < n; j++) { l = RG[n*k+j]; pts[j][0] = pointmat(0,l); pts[j][1] = pointmat(1,l); pts[j][2] = values(l); } if (n == 3) { SaveSTLTri(os, pts[0], pts[1], pts[2]); } else { SaveSTLTri(os, pts[0], pts[1], pts[2]); SaveSTLTri(os, pts[0], pts[2], pts[3]); } } if (i == 0) { bbox[0][0] = pointmat(0,0); bbox[0][1] = pointmat(0,0); bbox[1][0] = pointmat(1,0); bbox[1][1] = pointmat(1,0); bbox[2][0] = values(0); bbox[2][1] = values(0); } for (j = 0; j < values.Size(); j++) { if (bbox[0][0] > pointmat(0,j)) { bbox[0][0] = pointmat(0,j); } if (bbox[0][1] < pointmat(0,j)) { bbox[0][1] = pointmat(0,j); } if (bbox[1][0] > pointmat(1,j)) { bbox[1][0] = pointmat(1,j); } if (bbox[1][1] < pointmat(1,j)) { bbox[1][1] = pointmat(1,j); } if (bbox[2][0] > values(j)) { bbox[2][0] = values(j); } if (bbox[2][1] < values(j)) { bbox[2][1] = values(j); } } } mfem::out << "[xmin,xmax] = [" << bbox[0][0] << ',' << bbox[0][1] << "]\n" << "[ymin,ymax] = [" << bbox[1][0] << ',' << bbox[1][1] << "]\n" << "[zmin,zmax] = [" << bbox[2][0] << ',' << bbox[2][1] << ']' << endl; os << "endsolid GridFunction" << endl; } std::ostream &operator<<(std::ostream &os, const GridFunction &sol) { sol.Save(os); return os; } void GridFunction::LegacyNCReorder() { const Mesh* mesh = fes->GetMesh(); MFEM_ASSERT(mesh->Nonconforming(), ""); // get the mapping (old_vertex_index -> new_vertex_index) Array new_vertex, old_vertex; mesh->ncmesh->LegacyToNewVertexOrdering(new_vertex); MFEM_ASSERT(new_vertex.Size() == mesh->GetNV(), ""); // get the mapping (new_vertex_index -> old_vertex_index) old_vertex.SetSize(new_vertex.Size()); for (int i = 0; i < new_vertex.Size(); i++) { old_vertex[new_vertex[i]] = i; } Vector tmp = *this; // reorder vertex DOFs Array old_vdofs, new_vdofs; for (int i = 0; i < mesh->GetNV(); i++) { fes->GetVertexVDofs(i, old_vdofs); fes->GetVertexVDofs(new_vertex[i], new_vdofs); for (int j = 0; j < new_vdofs.Size(); j++) { tmp(new_vdofs[j]) = (*this)(old_vdofs[j]); } } // reorder edge DOFs -- edge orientation has changed too Array dofs, ev; for (int i = 0; i < mesh->GetNEdges(); i++) { mesh->GetEdgeVertices(i, ev); if (old_vertex[ev[0]] > old_vertex[ev[1]]) { const int *ind = fec->DofOrderForOrientation(Geometry::SEGMENT, -1); fes->GetEdgeInteriorDofs(i, dofs); for (int k = 0; k < dofs.Size(); k++) { int new_dof = dofs[k]; int old_dof = dofs[(ind[k] < 0) ? -1-ind[k] : ind[k]]; for (int j = 0; j < fes->GetVDim(); j++) { int new_vdof = fes->DofToVDof(new_dof, j); int old_vdof = fes->DofToVDof(old_dof, j); double sign = (ind[k] < 0) ? -1.0 : 1.0; tmp(new_vdof) = sign * (*this)(old_vdof); } } } } Vector::Swap(tmp); } double ZZErrorEstimator(BilinearFormIntegrator &blfi, GridFunction &u, GridFunction &flux, Vector &error_estimates, Array* aniso_flags, int with_subdomains, bool with_coeff) { FiniteElementSpace *ufes = u.FESpace(); FiniteElementSpace *ffes = flux.FESpace(); ElementTransformation *Transf; int dim = ufes->GetMesh()->Dimension(); int nfe = ufes->GetNE(); Array udofs; Array fdofs; Vector ul, fl, fla, d_xyz; error_estimates.SetSize(nfe); if (aniso_flags) { aniso_flags->SetSize(nfe); d_xyz.SetSize(dim); } int nsd = 1; if (with_subdomains) { nsd = ufes->GetMesh()->attributes.Max(); } double total_error = 0.0; for (int s = 1; s <= nsd; s++) { // This calls the parallel version when u is a ParGridFunction u.ComputeFlux(blfi, flux, with_coeff, (with_subdomains ? s : -1)); for (int i = 0; i < nfe; i++) { if (with_subdomains && ufes->GetAttribute(i) != s) { continue; } const DofTransformation* const utrans = ufes->GetElementVDofs(i, udofs); const DofTransformation* const ftrans = ffes->GetElementVDofs(i, fdofs); u.GetSubVector(udofs, ul); flux.GetSubVector(fdofs, fla); if (utrans) { utrans->InvTransformPrimal(ul); } if (ftrans) { ftrans->InvTransformPrimal(fla); } Transf = ufes->GetElementTransformation(i); blfi.ComputeElementFlux(*ufes->GetFE(i), *Transf, ul, *ffes->GetFE(i), fl, with_coeff); fl -= fla; double eng = blfi.ComputeFluxEnergy(*ffes->GetFE(i), *Transf, fl, (aniso_flags ? &d_xyz : NULL)); error_estimates(i) = std::sqrt(eng); total_error += eng; if (aniso_flags) { double sum = 0; for (int k = 0; k < dim; k++) { sum += d_xyz[k]; } double thresh = 0.15 * 3.0/dim; int flag = 0; for (int k = 0; k < dim; k++) { if (d_xyz[k] / sum > thresh) { flag |= (1 << k); } } (*aniso_flags)[i] = flag; } } } #ifdef MFEM_USE_MPI auto pfes = dynamic_cast(ufes); if (pfes) { auto process_local_error = total_error; MPI_Allreduce(&process_local_error, &total_error, 1, MPI_DOUBLE, MPI_SUM, pfes->GetComm()); } #endif // MFEM_USE_MPI return std::sqrt(total_error); } void TensorProductLegendre(int dim, // input int order, // input const Vector &x_in, // input const Vector &xmax, // input const Vector &xmin, // input Vector &poly, // output double angle, // input (optional) const Vector *midpoint) // input (optional) { MFEM_VERIFY(dim >= 1, "dim must be positive"); MFEM_VERIFY(dim <= 3, "dim cannot be greater than 3"); MFEM_VERIFY(order >= 0, "order cannot be negative"); bool rotate = (angle != 0.0) || (midpoint->Norml2() != 0.0); Vector x(dim); if (rotate && dim == 2) { // Rotate coordinates to match rotated bounding box Vector tmp(dim); tmp = x_in; tmp -= *midpoint; x[0] = tmp[0]*cos(-angle) - tmp[1]*sin(-angle); x[1] = tmp[0]*sin(-angle) + tmp[1]*cos(-angle); } else { // Bounding box is not reoriented no need to change orientation x = x_in; } // Map x to [0, 1] to use CalcLegendre since it uses shifted Legendre Polynomials. double x1 = (x(0) - xmin(0))/(xmax(0)-xmin(0)), x2, x3; Vector poly_x(order+1), poly_y(order+1), poly_z(order+1); poly1d.CalcLegendre(order, x1, poly_x.GetData()); if (dim > 1) { x2 = (x(1)-xmin(1))/(xmax(1)-xmin(1)); poly1d.CalcLegendre(order, x2, poly_y.GetData()); } if (dim == 3) { x3 = (x(2)-xmin(2))/(xmax(2)-xmin(2)); poly1d.CalcLegendre(order, x3, poly_z.GetData()); } int basis_dimension = static_cast(pow(order+1,dim)); poly.SetSize(basis_dimension); switch (dim) { case 1: { for (int i = 0; i <= order; i++) { poly(i) = poly_x(i); } } break; case 2: { for (int j = 0; j <= order; j++) { for (int i = 0; i <= order; i++) { int cnt = i + (order+1) * j; poly(cnt) = poly_x(i) * poly_y(j); } } } break; case 3: { for (int k = 0; k <= order; k++) { for (int j = 0; j <= order; j++) { for (int i = 0; i <= order; i++) { int cnt = i + (order+1) * j + (order+1) * (order+1) * k; poly(cnt) = poly_x(i) * poly_y(j) * poly_z(k); } } } } break; default: { MFEM_ABORT("TensorProductLegendre: invalid value of dim"); } } } void BoundingBox(const Array &patch, // input FiniteElementSpace *ufes, // input int order, // input Vector &xmin, // output Vector &xmax, // output double &angle, // output Vector &midpoint, // output int iface) // input (optional) { Mesh *mesh = ufes->GetMesh(); int dim = mesh->Dimension(); int num_elems = patch.Size(); IsoparametricTransformation Tr; xmax = -infinity(); xmin = infinity(); angle = 0.0; midpoint = 0.0; bool rotate = (dim == 2); // Rotate bounding box to match the face orientation if (rotate && iface >= 0) { IntegrationPoint reference_pt; mesh->GetFaceTransformation(iface, &Tr); Vector physical_pt(2); Vector physical_diff(2); physical_diff = 0.0; // Get the endpoints of the edge in physical space // then compute midpoint and angle for (int i = 0; i < 2; i++) { reference_pt.Set1w((double)i, 0.0); Tr.Transform(reference_pt, physical_pt); midpoint += physical_pt; physical_pt *= pow(-1.0,i); physical_diff += physical_pt; } midpoint /= 2.0; angle = atan2(physical_diff(1),physical_diff(0)); } for (int i = 0; i < num_elems; i++) { int ielem = patch[i]; const IntegrationRule *ir = &(IntRules.Get(mesh->GetElementGeometry(ielem), order)); ufes->GetElementTransformation(ielem, &Tr); for (int k = 0; k < ir->GetNPoints(); k++) { const IntegrationPoint ip = ir->IntPoint(k); Vector transip(dim); Tr.Transform(ip, transip); if (rotate) { transip -= midpoint; Vector tmp(dim); tmp = transip; transip[0] = tmp[0]*cos(-angle) - tmp[1]*sin(-angle); transip[1] = tmp[0]*sin(-angle) + tmp[1]*cos(-angle); } for (int d = 0; d < dim; d++) { xmax(d) = max(xmax(d), transip(d)); } for (int d = 0; d < dim; d++) { xmin(d) = min(xmin(d), transip(d)); } } } } double LSZZErrorEstimator(BilinearFormIntegrator &blfi, // input GridFunction &u, // input Vector &error_estimates, // output bool subdomain_reconstruction, // input (optional) bool with_coeff, // input (optional) double tichonov_coeff) // input (optional) { MFEM_VERIFY(tichonov_coeff >= 0.0, "tichonov_coeff cannot be negative"); FiniteElementSpace *ufes = u.FESpace(); ElementTransformation *Transf; Mesh *mesh = ufes->GetMesh(); int dim = mesh->Dimension(); int sdim = mesh->SpaceDimension(); int nfe = ufes->GetNE(); int nfaces = ufes->GetNF(); Array udofs; Array fdofs; Vector ul, fl, fla; error_estimates.SetSize(nfe); error_estimates = 0.0; Array counters(nfe); counters = 0; Vector xmax(dim); Vector xmin(dim); double angle = 0.0; Vector midpoint(dim); // Compute the number of subdomains int nsd = 1; if (subdomain_reconstruction) { nsd = ufes->GetMesh()->attributes.Max(); } double total_error = 0.0; for (int iface = 0; iface < nfaces; iface++) { // 1.A. Find all elements in the face patch. int el1; int el2; mesh->GetFaceElements(iface, &el1, &el2); Array patch(2); patch[0] = el1; patch[1] = el2; // 1.B. Check if boundary face or non-conforming coarse face and continue if true. if (el1 == -1 || el2 == -1) { continue; } // 1.C Check if face patch crosses an attribute interface and // continue if true (only active if subdomain_reconstruction == true) if (nsd > 1) { int el1_attr = ufes->GetAttribute(el1); int el2_attr = ufes->GetAttribute(el2); if (el1_attr != el2_attr) { continue; } } // 2. Compute global flux polynomial. // 2.A. Compute polynomial order of patch (for hp FEM) const int patch_order = max(ufes->GetElementOrder(el1), ufes->GetElementOrder(el2)); int num_basis_functions = static_cast(pow(patch_order+1,dim)); int flux_order = 2*patch_order + 1; DenseMatrix A(num_basis_functions); Array b(sdim * num_basis_functions); A = 0.0; b = 0.0; // 2.B. Estimate the smallest bounding box around the face patch // (this is used in 2.C.ii. to define a global polynomial basis) BoundingBox(patch, ufes, flux_order, xmin, xmax, angle, midpoint, iface); // 2.C. Compute the normal equations for the least-squares problem // 2.C.i. Evaluate the discrete flux at all integration points in all // elements in the face patch for (int i = 0; i < patch.Size(); i++) { int ielem = patch[i]; const IntegrationRule *ir = &(IntRules.Get(mesh->GetElementGeometry(ielem), flux_order)); int num_integration_pts = ir->GetNPoints(); const DofTransformation* const utrans = ufes->GetElementVDofs(ielem, udofs); u.GetSubVector(udofs, ul); if (utrans) { utrans->InvTransformPrimal(ul); } Transf = ufes->GetElementTransformation(ielem); FiniteElement *dummy = nullptr; blfi.ComputeElementFlux(*ufes->GetFE(ielem), *Transf, ul, *dummy, fl, with_coeff, ir); // 2.C.ii. Use global polynomial basis to construct normal // equations for (int k = 0; k < num_integration_pts; k++) { const IntegrationPoint ip = ir->IntPoint(k); double tmp[3]; Vector transip(tmp, 3); Transf->Transform(ip, transip); Vector p; TensorProductLegendre(dim, patch_order, transip, xmax, xmin, p, angle, &midpoint); AddMultVVt(p, A); for (int l = 0; l < num_basis_functions; l++) { // Loop through each component of the discrete flux for (int n = 0; n < sdim; n++) { b[l + n * num_basis_functions] += p(l) * fl(k + n * num_integration_pts); } } } } // 2.D. Shift spectrum of A to avoid conditioning issues. // Regularization is necessary if the tensor product space used for the // flux reconstruction leads to an underdetermined system of linear equations. // This should not happen if there are tensor product elements in the patch, // but it can happen if there are other element shapes (those with few // integration points) in the patch. for (int i = 0; i < num_basis_functions; i++) { A(i,i) += tichonov_coeff; } // 2.E. Solve for polynomial coefficients Array ipiv(num_basis_functions); LUFactors lu(A.Data(), ipiv); double TOL = 1e-9; if (!lu.Factor(num_basis_functions,TOL)) { // Singular matrix mfem::out << "LSZZErrorEstimator: Matrix A is singular.\t" << "Consider increasing tichonov_coeff." << endl; for (int i = 0; i < num_basis_functions; i++) { A(i,i) += 1e-8; } lu.Factor(num_basis_functions,TOL); } lu.Solve(num_basis_functions, sdim, b); // 2.F. Construct l2-minimizing global polynomial auto global_poly_tmp = [=] (const Vector &x, Vector &f) { Vector p; TensorProductLegendre(dim, patch_order, x, xmax, xmin, p, angle, &midpoint); f = 0.0; for (int i = 0; i < num_basis_functions; i++) { for (int j = 0; j < sdim; j++) { f(j) += b[i + j * num_basis_functions] * p(i); } } }; VectorFunctionCoefficient global_poly(sdim, global_poly_tmp); // 3. Compute error contributions from the face. double element_error = 0.0; double patch_error = 0.0; for (int i = 0; i < patch.Size(); i++) { int ielem = patch[i]; element_error = u.ComputeElementGradError(ielem, &global_poly); element_error *= element_error; patch_error += element_error; error_estimates(ielem) += element_error; counters[ielem]++; } total_error += patch_error; } // 4. Calibrate the final error estimates. Note that the l2 norm of // error_estimates vector converges to total_error. // The error estimates have been calibrated so that high order // benchmark problems with tensor product elements are asymptotically // exact. for (int ielem = 0; ielem < nfe; ielem++) { if (counters[ielem] == 0) { error_estimates(ielem) = infinity(); } else { error_estimates(ielem) /= counters[ielem]/2.0; error_estimates(ielem) = sqrt(error_estimates(ielem)); } } return std::sqrt(total_error/dim); } double ComputeElementLpDistance(double p, int i, GridFunction& gf1, GridFunction& gf2) { double norm = 0.0; FiniteElementSpace *fes1 = gf1.FESpace(); FiniteElementSpace *fes2 = gf2.FESpace(); const FiniteElement* fe1 = fes1->GetFE(i); const FiniteElement* fe2 = fes2->GetFE(i); const IntegrationRule *ir; int intorder = 2*std::max(fe1->GetOrder(),fe2->GetOrder()) + 1; // <------- ir = &(IntRules.Get(fe1->GetGeomType(), intorder)); int nip = ir->GetNPoints(); Vector val1, val2; ElementTransformation *T = fes1->GetElementTransformation(i); for (int j = 0; j < nip; j++) { const IntegrationPoint &ip = ir->IntPoint(j); T->SetIntPoint(&ip); gf1.GetVectorValue(i, ip, val1); gf2.GetVectorValue(i, ip, val2); val1 -= val2; double errj = val1.Norml2(); if (p < infinity()) { errj = pow(errj, p); norm += ip.weight * T->Weight() * errj; } else { norm = std::max(norm, errj); } } if (p < infinity()) { // Negative quadrature weights may cause the norm to be negative if (norm < 0.) { norm = -pow(-norm, 1./p); } else { norm = pow(norm, 1./p); } } return norm; } double ExtrudeCoefficient::Eval(ElementTransformation &T, const IntegrationPoint &ip) { ElementTransformation *T_in = mesh_in->GetElementTransformation(T.ElementNo / n); T_in->SetIntPoint(&ip); return sol_in.Eval(*T_in, ip); } GridFunction *Extrude1DGridFunction(Mesh *mesh, Mesh *mesh2d, GridFunction *sol, const int ny) { GridFunction *sol2d; FiniteElementCollection *solfec2d; const char *name = sol->FESpace()->FEColl()->Name(); string cname = name; if (cname == "Linear") { solfec2d = new LinearFECollection; } else if (cname == "Quadratic") { solfec2d = new QuadraticFECollection; } else if (cname == "Cubic") { solfec2d = new CubicFECollection; } else if (!strncmp(name, "H1_", 3)) { solfec2d = new H1_FECollection(atoi(name + 7), 2); } else if (!strncmp(name, "H1Pos_", 6)) { // use regular (nodal) H1_FECollection solfec2d = new H1_FECollection(atoi(name + 10), 2); } else if (!strncmp(name, "L2_T", 4)) { solfec2d = new L2_FECollection(atoi(name + 10), 2); } else if (!strncmp(name, "L2_", 3)) { solfec2d = new L2_FECollection(atoi(name + 7), 2); } else { mfem::err << "Extrude1DGridFunction : unknown FE collection : " << cname << endl; return NULL; } FiniteElementSpace *solfes2d; // assuming sol is scalar solfes2d = new FiniteElementSpace(mesh2d, solfec2d); sol2d = new GridFunction(solfes2d); sol2d->MakeOwner(solfec2d); { GridFunctionCoefficient csol(sol); ExtrudeCoefficient c2d(mesh, csol, ny); sol2d->ProjectCoefficient(c2d); } return sol2d; } }