// Copyright (c) 2010-2023, Lawrence Livermore National Security, LLC. Produced // at the Lawrence Livermore National Laboratory. All Rights reserved. See files // LICENSE and NOTICE for details. LLNL-CODE-806117. // // This file is part of the MFEM library. For more information and source code // availability visit https://mfem.org. // // MFEM is free software; you can redistribute it and/or modify it under the // terms of the BSD-3 license. We welcome feedback and contributions, see file // CONTRIBUTING.md for details. #include "../tmop.hpp" #include "tmop_pa.hpp" #include "../linearform.hpp" #include "../../general/forall.hpp" #include "../../linalg/kernels.hpp" #include "../../linalg/dinvariants.hpp" namespace mfem { using Args = kernels::InvariantsEvaluator2D::Buffers; static MFEM_HOST_DEVICE inline double EvalW_001(const double *Jpt) { kernels::InvariantsEvaluator2D ie(Args().J(Jpt)); return ie.Get_I1(); } static MFEM_HOST_DEVICE inline double EvalW_002(const double *Jpt) { kernels::InvariantsEvaluator2D ie(Args().J(Jpt)); return 0.5 * ie.Get_I1b() - 1.0; } static MFEM_HOST_DEVICE inline double EvalW_007(const double *Jpt) { kernels::InvariantsEvaluator2D ie(Args().J(Jpt)); return ie.Get_I1() * (1.0 + 1.0/ie.Get_I2()) - 4.0; } // mu_56 = 0.5*(I2b + 1/I2b) - 1. static MFEM_HOST_DEVICE inline double EvalW_056(const double *Jpt) { kernels::InvariantsEvaluator2D ie(Args().J(Jpt)); const double I2b = ie.Get_I2b(); return 0.5*(I2b + 1.0/I2b) - 1.0; } static MFEM_HOST_DEVICE inline double EvalW_077(const double *Jpt) { kernels::InvariantsEvaluator2D ie(Args().J(Jpt)); const double I2b = ie.Get_I2b(); return 0.5*(I2b*I2b + 1./(I2b*I2b) - 2.); } static MFEM_HOST_DEVICE inline double EvalW_080(const double *Jpt, const double *w) { return w[0] * EvalW_002(Jpt) + w[1] * EvalW_077(Jpt); } static MFEM_HOST_DEVICE inline double EvalW_094(const double *Jpt, const double *w) { return w[0] * EvalW_002(Jpt) + w[1] * EvalW_056(Jpt); } MFEM_REGISTER_TMOP_KERNELS(double, EnergyPA_2D, const double metric_normal, const Array &metric_param, const int mid, const int NE, const DenseTensor &j_, const Array &w_, const Array &b_, const Array &g_, const Vector &x_, const Vector &ones, Vector &energy, const int d1d, const int q1d) { MFEM_VERIFY(mid == 1 || mid == 2 || mid == 7 || mid == 77 || mid == 80 || mid == 94, "2D metric not yet implemented!"); constexpr int DIM = 2; constexpr int NBZ = 1; const int D1D = T_D1D ? T_D1D : d1d; const int Q1D = T_Q1D ? T_Q1D : q1d; const auto J = Reshape(j_.Read(), DIM, DIM, Q1D, Q1D, NE); const auto b = Reshape(b_.Read(), Q1D, D1D); const auto g = Reshape(g_.Read(), Q1D, D1D); const auto W = Reshape(w_.Read(), Q1D, Q1D); const auto X = Reshape(x_.Read(), D1D, D1D, DIM, NE); auto E = Reshape(energy.Write(), Q1D, Q1D, NE); const double *metric_data = metric_param.Read(); mfem::forall_2D_batch(NE, Q1D, Q1D, NBZ, [=] MFEM_HOST_DEVICE (int e) { constexpr int NBZ = 1; constexpr int MQ1 = T_Q1D ? T_Q1D : T_MAX; constexpr int MD1 = T_D1D ? T_D1D : T_MAX; const int D1D = T_D1D ? T_D1D : d1d; const int Q1D = T_Q1D ? T_Q1D : q1d; MFEM_SHARED double BG[2][MQ1*MD1]; MFEM_SHARED double XY[2][NBZ][MD1*MD1]; MFEM_SHARED double DQ[4][NBZ][MD1*MQ1]; MFEM_SHARED double QQ[4][NBZ][MQ1*MQ1]; kernels::internal::LoadX(e,D1D,X,XY); kernels::internal::LoadBG(D1D,Q1D,b,g,BG); kernels::internal::GradX(D1D,Q1D,BG,XY,DQ); kernels::internal::GradY(D1D,Q1D,BG,DQ,QQ); MFEM_FOREACH_THREAD(qy,y,Q1D) { MFEM_FOREACH_THREAD(qx,x,Q1D) { const double *Jtr = &J(0,0,qx,qy,e); const double detJtr = kernels::Det<2>(Jtr); const double weight = metric_normal * W(qx,qy) * detJtr; // Jrt = Jtr^{-1} double Jrt[4]; kernels::CalcInverse<2>(Jtr, Jrt); // Jpr = X^t.DSh double Jpr[4]; kernels::internal::PullGrad(Q1D,qx,qy,QQ,Jpr); // Jpt = X^T.DS = (X^T.DSh).Jrt = Jpr.Jrt double Jpt[4]; kernels::Mult(2,2,2,Jpr,Jrt,Jpt); // metric->EvalW(Jpt); const double EvalW = mid == 1 ? EvalW_001(Jpt) : mid == 2 ? EvalW_002(Jpt) : mid == 7 ? EvalW_007(Jpt) : mid == 77 ? EvalW_077(Jpt) : mid == 80 ? EvalW_080(Jpt, metric_data) : mid == 94 ? EvalW_094(Jpt, metric_data) : 0.0; E(qx,qy,e) = weight * EvalW; } } }); return energy * ones; } double TMOP_Integrator::GetLocalStateEnergyPA_2D(const Vector &X) const { const int N = PA.ne; const int M = metric->Id(); const int D1D = PA.maps->ndof; const int Q1D = PA.maps->nqpt; const int id = (D1D << 4 ) | Q1D; const double mn = metric_normal; const DenseTensor &J = PA.Jtr; const Array &W = PA.ir->GetWeights(); const Array &B = PA.maps->B; const Array &G = PA.maps->G; const Vector &O = PA.O; Vector &E = PA.E; Array mp; if (auto m = dynamic_cast(metric)) { m->GetWeights(mp); } MFEM_LAUNCH_TMOP_KERNEL(EnergyPA_2D,id,mn,mp,M,N,J,W,B,G,X,O,E); } } // namespace mfem