// Copyright (c) 2010-2023, Lawrence Livermore National Security, LLC. Produced // at the Lawrence Livermore National Laboratory. All Rights reserved. See files // LICENSE and NOTICE for details. LLNL-CODE-806117. // // This file is part of the MFEM library. For more information and source code // availability visit https://mfem.org. // // MFEM is free software; you can redistribute it and/or modify it under the // terms of the BSD-3 license. We welcome feedback and contributions, see file // CONTRIBUTING.md for details. #ifndef MFEM_INVARIANTS_HPP #define MFEM_INVARIANTS_HPP #include "../config/config.hpp" #include "../general/error.hpp" #include namespace mfem { // Matrix invariants and their derivatives for 2x2 and 3x3 matrices. /** @brief Auxiliary class used as the default for the second template parameter in the classes InvariantsEvaluator2D and InvariantsEvaluator3D. */ template struct ScalarOps { static scalar_t sign(const scalar_t &a) { return (a >= scalar_t(0)) ? scalar_t(1) : scalar_t(-1); } static scalar_t pow(const scalar_t &x, int m, int n) { return std::pow(x, scalar_t(m)/n); } }; /** @brief Auxiliary class for evaluating the 2x2 matrix invariants and their first and second derivatives. */ /** The type `scalar_t` must support the standard operations: =, +=, -=, +, -, *, /, unary -, int*scalar_t, int/scalar_t, scalar_t/int The type `scalar_ops` must define the static method: scalar_t sign(const scalar_t &); */ template > class InvariantsEvaluator2D { protected: // Transformation Jacobian const scalar_t *J; // Invariants: I_1 = ||J||_F^2, \bar{I}_1 = I_1/det(J), \bar{I}_2 = det(J). scalar_t I1, I1b, I2b; // Derivatives of I1, I1b, I2, and I2b using column-major storage. scalar_t dI1[4], dI1b[4], dI2[4], dI2b[4]; int D_height, alloc_height; const scalar_t *D; // Always points to external data or is empty scalar_t *DaJ, *DJt, *DXt, *DYt; enum EvalMasks { HAVE_I1 = 1, HAVE_I1b = 2, HAVE_I2b = 4, HAVE_dI1 = 8, HAVE_dI1b = 16, HAVE_dI2 = 32, HAVE_dI2b = 64, HAVE_DaJ = 128, // D adj(J) = D dI2b^t HAVE_DJt = 256 // D J^t }; // Bitwise OR of EvalMasks int eval_state; bool dont(int have_mask) const { return !(eval_state & have_mask); } void Eval_I1() { eval_state |= HAVE_I1; I1 = J[0]*J[0] + J[1]*J[1] + J[2]*J[2] + J[3]*J[3]; } void Eval_I1b() { eval_state |= HAVE_I1b; I1b = Get_I1()/Get_I2b(); } void Eval_I2b() { eval_state |= HAVE_I2b; const scalar_t det = J[0]*J[3] - J[1]*J[2]; I2b = det; } void Eval_dI1() { eval_state |= HAVE_dI1; dI1[0] = 2*J[0]; dI1[2] = 2*J[2]; dI1[1] = 2*J[1]; dI1[3] = 2*J[3]; } void Eval_dI1b() { eval_state |= HAVE_dI1b; // I1b = I1/I2b // dI1b = (1/I2b)*dI1 - (I1/I2b^2)*dI2b = (2/I2b)*[J - (I1b/2)*dI2b] const scalar_t c1 = 2/Get_I2b(); const scalar_t c2 = Get_I1b()/2; Get_dI2b(); dI1b[0] = c1*(J[0] - c2*dI2b[0]); dI1b[1] = c1*(J[1] - c2*dI2b[1]); dI1b[2] = c1*(J[2] - c2*dI2b[2]); dI1b[3] = c1*(J[3] - c2*dI2b[3]); } void Eval_dI2() { eval_state |= HAVE_dI2; // I2 = I2b^2 // dI2 = 2*I2b*dI2b = 2*det(J)*adj(J)^T const scalar_t c1 = 2*Get_I2b(); Get_dI2b(); dI2[0] = c1*dI2b[0]; dI2[1] = c1*dI2b[1]; dI2[2] = c1*dI2b[2]; dI2[3] = c1*dI2b[3]; } void Eval_dI2b() { eval_state |= HAVE_dI2b; // I2b = det(J) // dI2b = adj(J)^T Get_I2b(); dI2b[0] = J[3]; dI2b[1] = -J[2]; dI2b[2] = -J[1]; dI2b[3] = J[0]; } void Eval_DaJ() // D adj(J) = D dI2b^t { eval_state |= HAVE_DaJ; Get_dI2b(); Eval_DZt(dI2b, &DaJ); } void Eval_DJt() // D J^t { eval_state |= HAVE_DJt; Eval_DZt(J, &DJt); } void Eval_DZt(const scalar_t *Z, scalar_t **DZt_ptr) { MFEM_ASSERT(D != NULL, ""); const int nd = D_height; scalar_t *DZt = *DZt_ptr; if (DZt == NULL) { *DZt_ptr = DZt = new scalar_t[2*alloc_height]; } for (int i = 0; i < nd; i++) { const int i0 = i+nd*0, i1 = i+nd*1; DZt[i0] = D[i0]*Z[0] + D[i1]*Z[2]; DZt[i1] = D[i0]*Z[1] + D[i1]*Z[3]; } } public: /// The Jacobian should use column-major storage. InvariantsEvaluator2D(const scalar_t *Jac = NULL) : J(Jac), D_height(), alloc_height(), D(), DaJ(), DJt(), DXt(), DYt(), eval_state(0) { } ~InvariantsEvaluator2D() { delete [] DYt; delete [] DXt; delete [] DJt; delete [] DaJ; } /// The Jacobian should use column-major storage. void SetJacobian(const scalar_t *Jac) { J = Jac; eval_state = 0; } /// The @a Deriv matrix is `dof x 2`, using column-major storage. void SetDerivativeMatrix(int height, const scalar_t *Deriv) { eval_state &= ~(HAVE_DaJ | HAVE_DJt); if (alloc_height < height) { delete [] DYt; DYt = NULL; delete [] DXt; DXt = NULL; delete [] DJt; DJt = NULL; delete [] DaJ; DaJ = NULL; alloc_height = height; } D_height = height; D = Deriv; } scalar_t Get_I1() { if (dont(HAVE_I1 )) { Eval_I1(); } return I1; } scalar_t Get_I1b() { if (dont(HAVE_I1b)) { Eval_I1b(); } return I1b; } scalar_t Get_I2() { if (dont(HAVE_I2b)) { Eval_I2b(); } return I2b*I2b; } scalar_t Get_I2b() { if (dont(HAVE_I2b)) { Eval_I2b(); } return I2b; } const scalar_t *Get_dI1() { if (dont(HAVE_dI1 )) { Eval_dI1(); } return dI1; } const scalar_t *Get_dI1b() { if (dont(HAVE_dI1b)) { Eval_dI1b(); } return dI1b; } const scalar_t *Get_dI2() { if (dont(HAVE_dI2)) { Eval_dI2(); } return dI2; } const scalar_t *Get_dI2b() { if (dont(HAVE_dI2b)) { Eval_dI2b(); } return dI2b; } // Assemble operation for tensor X with components X_jslt: // A(i+nd*j,k+nd*l) += (\sum_st w D_is X_jslt D_kt) // 0 <= i,k < nd, 0 <= j,l,s,t < 2 // where nd is the height of D, i.e. the number of DOFs in one component. void Assemble_ddI1(scalar_t w, scalar_t *A) { // ddI1_jslt = 2 I_jslt = 2 δ_jl δ_st // A(i+nd*j,k+nd*l) += (\sum_st 2 w D_is δ_jl δ_st D_kt) // or // A(i+nd*j,k+nd*l) += (2 w) (\sum_s D_is D_ks) δ_jl // A(i+nd*j,k+nd*l) += (2 w) (D D^t)_ik δ_jl const int nd = D_height; const int ah = 2*nd; const scalar_t a = 2*w; for (int i = 0; i < nd; i++) { const int i0 = i+nd*0, i1 = i+nd*1; const scalar_t aDi[2] = { a*D[i0], a*D[i1] }; // k == i const scalar_t aDDt_ii = aDi[0]*D[i0] + aDi[1]*D[i1]; A[i0+ah*i0] += aDDt_ii; A[i1+ah*i1] += aDDt_ii; // 0 <= k < i for (int k = 0; k < i; k++) { const int k0 = k+nd*0, k1 = k+nd*1; const scalar_t aDDt_ik = aDi[0]*D[k0] + aDi[1]*D[k1]; A[i0+ah*k0] += aDDt_ik; A[k0+ah*i0] += aDDt_ik; A[i1+ah*k1] += aDDt_ik; A[k1+ah*i1] += aDDt_ik; } } } void Assemble_ddI1b(scalar_t w, scalar_t *A) { // ddI1b = X1 + X2 + X3, where // X1_ijkl = (I1b/I2) [ (δ_ks δ_it + δ_kt δ_si) dI2b_tj dI2b_sl ] // = (I1b/I2) [ dI2b_ij dI2b_kl + dI2b_kj dI2b_il ] // X2_ijkl = (2/I2b) δ_ik δ_jl = (1/I2b) ddI1_ijkl // X3_ijkl = -(2/I2) (δ_ks δ_it) (J_tj dI2b_sl + dI2b_tj J_sl) // = -(2/I2) (J_ij dI2b_kl + dI2b_ij J_kl) // // A(i+nd*j,k+nd*l) += (\sum_st w D_is ddI1b_jslt D_kt) // or // A(i+nd*j,k+nd*l) += // w (I1b/I2) [(D dI2b^t)_ij (D dI2b^t)_kl + // (D dI2b^t)_il (D dI2b^t)_kj] // + w (2/I2b) δ_jl (D D^t)_ik // - w (2/I2) [(D J^t)_ij (D dI2b^t)_kl + (D dI2b^t)_ij (D J^t)_kl] if (dont(HAVE_DaJ)) { Eval_DaJ(); } if (dont(HAVE_DJt)) { Eval_DJt(); } const int nd = D_height; const int ah = 2*nd; const scalar_t a = w*Get_I1b()/Get_I2(); const scalar_t b = 2*w/Get_I2b(); const scalar_t c = -2*w/Get_I2(); for (int i = 0; i < nd; i++) { const int i0 = i+nd*0, i1 = i+nd*1; const scalar_t aDaJ_i[2] = { a*DaJ[i0], a*DaJ[i1] }; const scalar_t bD_i[2] = { b*D[i0], b*D[i1] }; const scalar_t cDJt_i[2] = { c*DJt[i0], c*DJt[i1] }; const scalar_t cDaJ_i[2] = { c*DaJ[i0], c*DaJ[i1] }; // k == i { // Symmetries: A2_ii_00 = A2_ii_11 const scalar_t A2_ii = bD_i[0]*D[i0] + bD_i[1]*D[i1]; A[i0+ah*i0] += 2*(aDaJ_i[0] + cDJt_i[0])*DaJ[i0] + A2_ii; // Symmetries: A_ii_01 = A_ii_10 const scalar_t A_ii_01 = (2*aDaJ_i[0] + cDJt_i[0])*DaJ[i1] + cDaJ_i[0]*DJt[i1]; A[i0+ah*i1] += A_ii_01; A[i1+ah*i0] += A_ii_01; A[i1+ah*i1] += 2*(aDaJ_i[1] + cDJt_i[1])*DaJ[i1] + A2_ii; } // 0 <= k < i for (int k = 0; k < i; k++) { const int k0 = k+nd*0, k1 = k+nd*1; // Symmetries: A1_ik_01 = A1_ik_10 = A1_ki_01 = A1_ki_10 const scalar_t A1_ik_01 = aDaJ_i[0]*DaJ[k1] + aDaJ_i[1]*DaJ[k0]; // Symmetries: A2_ik_00 = A2_ik_11 = A2_ki_00 = A2_ki_11 const scalar_t A2_ik = bD_i[0]*D[k0] + bD_i[1]*D[k1]; const scalar_t A_ik_00 = (2*aDaJ_i[0] + cDJt_i[0])*DaJ[k0] + A2_ik + cDaJ_i[0]*DJt[k0]; A[i0+ah*k0] += A_ik_00; A[k0+ah*i0] += A_ik_00; const scalar_t A_ik_01 = A1_ik_01 + cDJt_i[0]*DaJ[k1] + cDaJ_i[0]*DJt[k1]; A[i0+ah*k1] += A_ik_01; A[k1+ah*i0] += A_ik_01; const scalar_t A_ik_10 = A1_ik_01 + cDJt_i[1]*DaJ[k0] + cDaJ_i[1]*DJt[k0]; A[i1+ah*k0] += A_ik_10; A[k0+ah*i1] += A_ik_10; const scalar_t A_ik_11 = (2*aDaJ_i[1] + cDJt_i[1])*DaJ[k1] + A2_ik + cDaJ_i[1]*DJt[k1]; A[i1+ah*k1] += A_ik_11; A[k1+ah*i1] += A_ik_11; } } } void Assemble_ddI2(scalar_t w, scalar_t *A) { // ddI2_ijkl = 2 (2 δ_ks δ_it - δ_kt δ_si) dI2b_tj dI2b_sl // = 4 dI2b_ij dI2b_kl - 2 dI2b_kj dI2b_il // = 2 dI2b_ij dI2b_kl + 2 (dI2b_ij dI2b_kl - dI2b_kj dI2b_il) // // A(i+nd*j,k+nd*l) += (\sum_st w D_is ddI2_jslt D_kt) // or // A(i+nd*j,k+nd*l) += // (\sum_st w D_is (4 dI2b_js dI2b_lt - 2 dI2b_ls dI2b_jt) D_kt) // A(i+nd*j,k+nd*l) += // 2 w [2 (D dI2b^t)_ij (D dI2b^t)_kl - (D dI2b^t)_il (D dI2b^t)_kj] // // Note: the expression // (D dI2b^t)_ij (D dI2b^t)_kl - (D dI2b^t)_il (D dI2b^t)_kj // is the determinant of the 2x2 matrix formed by rows {i,k} and columns // {j,l} from the matrix (D dI2b^t). if (dont(HAVE_DaJ)) { Eval_DaJ(); } const int nd = D_height; const int ah = 2*nd; const scalar_t a = 2*w; for (int i = 0; i < ah; i++) { const scalar_t avi = a*DaJ[i]; A[i+ah*i] += avi*DaJ[i]; for (int j = 0; j < i; j++) { const scalar_t aVVt_ij = avi*DaJ[j]; A[i+ah*j] += aVVt_ij; A[j+ah*i] += aVVt_ij; } } const int j = 1, l = 0; for (int i = 0; i < nd; i++) { const int ij = i+nd*j, il = i+nd*l; const scalar_t aDaJ_ij = a*DaJ[ij], aDaJ_il = a*DaJ[il]; for (int k = 0; k < i; k++) { const int kj = k+nd*j, kl = k+nd*l; const scalar_t A_ijkl = aDaJ_ij*DaJ[kl] - aDaJ_il*DaJ[kj]; A[ij+ah*kl] += A_ijkl; A[kl+ah*ij] += A_ijkl; A[kj+ah*il] -= A_ijkl; A[il+ah*kj] -= A_ijkl; } } } void Assemble_ddI2b(scalar_t w, scalar_t *A) { // ddI2b_ijkl = (1/I2b) (δ_ks δ_it - δ_kt δ_si) dI2b_tj dI2b_sl // [j -> u], [l -> v], [i -> j], [k -> l] // ddI2b_julv = (1/I2b) (δ_ls δ_jt - δ_lt δ_sj) dI2b_tu dI2b_sv // // A(i+nd*j,k+nd*l) += (\sum_st w D_is ddI2b_jslt D_kt) // or // A(i+nd*j,k+nd*l) += (\sum_uv w D_iu ddI2b_julv D_kv) // A(i+nd*j,k+nd*l) += // (\sum_uvst (w/I2b) // D_iu (δ_ls δ_jt - δ_lt δ_sj) dI2b_tu dI2b_sv D_kv) // A(i+nd*j,k+nd*l) += // (\sum_st (w/I2b) // (D dI2b^t)_it (δ_ls δ_jt - δ_lt δ_sj) (D dI2b^t)_ks) // A(i+nd*j,k+nd*l) += (w/I2b) // [ (D dI2b^t)_ij (D dI2b^t)_kl - (D dI2b^t)_il (D dI2b^t)_kj ] if (dont(HAVE_DaJ)) { Eval_DaJ(); } const int nd = D_height; const int ah = 2*nd; const int j = 1, l = 0; const scalar_t a = w/Get_I2b(); for (int i = 0; i < nd; i++) { const int ij = i+nd*j, il = i+nd*l; const scalar_t aDaJ_ij = a*DaJ[ij], aDaJ_il = a*DaJ[il]; for (int k = 0; k < i; k++) { const int kj = k+nd*j, kl = k+nd*l; const scalar_t A_ijkl = aDaJ_ij*DaJ[kl] - aDaJ_il*DaJ[kj]; A[ij+ah*kl] += A_ijkl; A[kl+ah*ij] += A_ijkl; A[kj+ah*il] -= A_ijkl; A[il+ah*kj] -= A_ijkl; } } } // Assemble the contribution from the term: T_ijkl = X_ij Y_kl + Y_ij X_kl, // where X and Y are pointers to 2x2 matrices stored in column-major layout. // // The contribution to the matrix A is given by: // A(i+nd*j,k+nd*l) += \sum_st w D_is T_jslt D_kt // or // A(i+nd*j,k+nd*l) += \sum_st w D_is (X_js Y_lt + Y_js X_lt) D_kt // or // A(i+nd*j,k+nd*l) += // \sum_st w [ (D X^t)_ij (D Y^t)_kl + (D Y^t)_ij (D X^t)_kl ] void Assemble_TProd(scalar_t w, const scalar_t *X, const scalar_t *Y, scalar_t *A) { Eval_DZt(X, &DXt); Eval_DZt(Y, &DYt); const int nd = D_height; const int ah = 2*nd; for (int i = 0; i < ah; i++) { const scalar_t axi = w*DXt[i], ayi = w*DYt[i]; A[i+ah*i] += 2*axi*DYt[i]; for (int j = 0; j < i; j++) { const scalar_t A_ij = axi*DYt[j] + ayi*DXt[j]; A[i+ah*j] += A_ij; A[j+ah*i] += A_ij; } } } // Assemble the contribution from the term: T_ijkl = X_ij X_kl, where X is a // pointer to a 2x2 matrix stored in column-major layout. // // The contribution to the matrix A is given by: // A(i+nd*j,k+nd*l) += \sum_st w D_is X_js X_lt D_kt // or // A(i+nd*j,k+nd*l) += \sum_st w [ (D X^t)_ij (D X^t)_kl ] void Assemble_TProd(scalar_t w, const scalar_t *X, scalar_t *A) { Eval_DZt(X, &DXt); const int nd = D_height; const int ah = 2*nd; for (int i = 0; i < ah; i++) { const scalar_t axi = w*DXt[i]; A[i+ah*i] += axi*DXt[i]; for (int j = 0; j < i; j++) { const scalar_t A_ij = axi*DXt[j]; A[i+ah*j] += A_ij; A[j+ah*i] += A_ij; } } } }; /** @brief Auxiliary class for evaluating the 3x3 matrix invariants and their first and second derivatives. */ /** The type `scalar_t` must support the standard operations: =, +=, -=, +, -, *, /, unary -, int*scalar_t, int/scalar_t, scalar_t/int The type `scalar_ops` must define the static methods: scalar_t sign(const scalar_t &); scalar_t pow(const scalar_t &x, int a, int b); // x^(a/b) */ template > class InvariantsEvaluator3D { protected: // Transformation Jacobian const scalar_t *J; // Invatiants: I1b = det(J)^{-2/3} * ||J||_F^2 // I2b = det(J)^{ 2/3} * ||J^{-1}||_F^2 // I3b = det(J) // Computed as: // I_1 = ||J||_F^2, \bar{I}_1 = det(J)^{-2/3}*I_1, // I_2 = (1/2)*(||J||_F^4-||J J^t||_F^2) = (1/2)*(I_1^2-||J J^t||_F^2), // \bar{I}_2 = det(J)^{-4/3}*I_2, // I_3 = det(J)^2, \bar{I}_3 = det(J). scalar_t I1, I1b, I2, I2b, I3b; scalar_t I3b_p; // I3b^{-2/3} // Derivatives of I1, I1b, I2, I2b, I3, and I3b using column-major storage. scalar_t dI1[9], dI1b[9], dI2[9], dI2b[9], dI3[9], dI3b[9]; scalar_t B[6]; // B = J J^t (diagonal entries first, then off-diagonal) int D_height, alloc_height; const scalar_t *D; // Always points to external data or is empty scalar_t *DaJ, *DJt, *DdI2t, *DXt, *DYt; enum EvalMasks { HAVE_I1 = 1, HAVE_I1b = 2, HAVE_B_offd = 4, HAVE_I2 = 8, HAVE_I2b = 16, HAVE_I3b = 1<<5, HAVE_I3b_p = 1<<6, HAVE_dI1 = 1<<7, HAVE_dI1b = 1<<8, HAVE_dI2 = 1<<9, HAVE_dI2b = 1<<10, HAVE_dI3 = 1<<11, HAVE_dI3b = 1<<12, HAVE_DaJ = 1<<13, // D adj(J) = D dI3b^t HAVE_DJt = 1<<14, // D J^t HAVE_DdI2t = 1<<15 // D dI2^t }; // Bitwise OR of EvalMasks int eval_state; bool dont(int have_mask) const { return !(eval_state & have_mask); } void Eval_I1() { eval_state |= HAVE_I1; B[0] = J[0]*J[0] + J[3]*J[3] + J[6]*J[6]; B[1] = J[1]*J[1] + J[4]*J[4] + J[7]*J[7]; B[2] = J[2]*J[2] + J[5]*J[5] + J[8]*J[8]; I1 = B[0] + B[1] + B[2]; } void Eval_I1b() // det(J)^{-2/3}*I_1 = I_1/I_3^{1/3} { eval_state |= HAVE_I1b; I1b = Get_I1()*Get_I3b_p(); } void Eval_B_offd() { eval_state |= HAVE_B_offd; // B = J J^t // B[3]=B(0,1), B[4]=B(0,2), B[5]=B(1,2) B[3] = J[0]*J[1] + J[3]*J[4] + J[6]*J[7]; // B(0,1) B[4] = J[0]*J[2] + J[3]*J[5] + J[6]*J[8]; // B(0,2) B[5] = J[1]*J[2] + J[4]*J[5] + J[7]*J[8]; // B(1,2) } void Eval_I2() { eval_state |= HAVE_I2; Get_I1(); if (dont(HAVE_B_offd)) { Eval_B_offd(); } const scalar_t BF2 = B[0]*B[0] + B[1]*B[1] + B[2]*B[2] + 2*(B[3]*B[3] + B[4]*B[4] + B[5]*B[5]); I2 = (I1*I1 - BF2)/2; } void Eval_I2b() // I2b = I2*I3b^{-4/3} { eval_state |= HAVE_I2b; Get_I3b_p(); I2b = Get_I2()*I3b_p*I3b_p; } void Eval_I3b() // det(J) { eval_state |= HAVE_I3b; I3b = J[0]*(J[4]*J[8] - J[7]*J[5]) - J[1]*(J[3]*J[8] - J[5]*J[6]) + J[2]*(J[3]*J[7] - J[4]*J[6]); } scalar_t Get_I3b_p() // I3b^{-2/3} { if (dont(HAVE_I3b_p)) { eval_state |= HAVE_I3b_p; const scalar_t i3b = Get_I3b(); I3b_p = scalar_ops::pow(i3b, -2, 3); } return I3b_p; } void Eval_dI1() { eval_state |= HAVE_dI1; for (int i = 0; i < 9; i++) { dI1[i] = 2*J[i]; } } void Eval_dI1b() { eval_state |= HAVE_dI1b; // I1b = I3b^{-2/3}*I1 // dI1b = 2*I3b^{-2/3}*(J - (1/3)*I1/I3b*dI3b) const scalar_t c1 = 2*Get_I3b_p(); const scalar_t c2 = Get_I1()/(3*I3b); Get_dI3b(); for (int i = 0; i < 9; i++) { dI1b[i] = c1*(J[i] - c2*dI3b[i]); } } void Eval_dI2() { eval_state |= HAVE_dI2; // dI2 = 2 I_1 J - 2 J J^t J = 2 (I_1 I - B) J Get_I1(); if (dont(HAVE_B_offd)) { Eval_B_offd(); } // B[0]=B(0,0), B[1]=B(1,1), B[2]=B(2,2) // B[3]=B(0,1), B[4]=B(0,2), B[5]=B(1,2) const scalar_t C[6] = { 2*(I1 - B[0]), 2*(I1 - B[1]), 2*(I1 - B[2]), -2*B[3], -2*B[4], -2*B[5] }; // | C[0] C[3] C[4] | | J[0] J[3] J[6] | // dI2 = | C[3] C[1] C[5] | | J[1] J[4] J[7] | // | C[4] C[5] C[2] | | J[2] J[5] J[8] | dI2[0] = C[0]*J[0] + C[3]*J[1] + C[4]*J[2]; dI2[1] = C[3]*J[0] + C[1]*J[1] + C[5]*J[2]; dI2[2] = C[4]*J[0] + C[5]*J[1] + C[2]*J[2]; dI2[3] = C[0]*J[3] + C[3]*J[4] + C[4]*J[5]; dI2[4] = C[3]*J[3] + C[1]*J[4] + C[5]*J[5]; dI2[5] = C[4]*J[3] + C[5]*J[4] + C[2]*J[5]; dI2[6] = C[0]*J[6] + C[3]*J[7] + C[4]*J[8]; dI2[7] = C[3]*J[6] + C[1]*J[7] + C[5]*J[8]; dI2[8] = C[4]*J[6] + C[5]*J[7] + C[2]*J[8]; } void Eval_dI2b() { eval_state |= HAVE_dI2b; // I2b = det(J)^{-4/3}*I2 = I3b^{-4/3}*I2 // dI2b = (-4/3)*I3b^{-7/3}*I2*dI3b + I3b^{-4/3}*dI2 // = I3b^{-4/3} * [ dI2 - (4/3)*I2/I3b*dI3b ] Get_I3b_p(); const scalar_t c1 = I3b_p*I3b_p; const scalar_t c2 = (4*Get_I2()/I3b)/3; Get_dI2(); Get_dI3b(); for (int i = 0; i < 9; i++) { dI2b[i] = c1*(dI2[i] - c2*dI3b[i]); } } void Eval_dI3() { eval_state |= HAVE_dI3; // I3 = I3b^2 // dI3 = 2*I3b*dI3b = 2*det(J)*adj(J)^T const scalar_t c1 = 2*Get_I3b(); Get_dI3b(); for (int i = 0; i < 9; i++) { dI3[i] = c1*dI3b[i]; } } void Eval_dI3b() { eval_state |= HAVE_dI3b; // I3b = det(J) // dI3b = adj(J)^T dI3b[0] = J[4]*J[8] - J[5]*J[7]; // 0 3 6 dI3b[1] = J[5]*J[6] - J[3]*J[8]; // 1 4 7 dI3b[2] = J[3]*J[7] - J[4]*J[6]; // 2 5 8 dI3b[3] = J[2]*J[7] - J[1]*J[8]; dI3b[4] = J[0]*J[8] - J[2]*J[6]; dI3b[5] = J[1]*J[6] - J[0]*J[7]; dI3b[6] = J[1]*J[5] - J[2]*J[4]; dI3b[7] = J[2]*J[3] - J[0]*J[5]; dI3b[8] = J[0]*J[4] - J[1]*J[3]; } void Eval_DZt(const scalar_t *Z, scalar_t **DZt_ptr) { MFEM_ASSERT(D != NULL, ""); const int nd = D_height; scalar_t *DZt = *DZt_ptr; if (DZt == NULL) { *DZt_ptr = DZt = new scalar_t[3*alloc_height]; } for (int i = 0; i < nd; i++) { const int i0 = i+nd*0, i1 = i+nd*1, i2 = i+nd*2; DZt[i0] = D[i0]*Z[0] + D[i1]*Z[3] + D[i2]*Z[6]; DZt[i1] = D[i0]*Z[1] + D[i1]*Z[4] + D[i2]*Z[7]; DZt[i2] = D[i0]*Z[2] + D[i1]*Z[5] + D[i2]*Z[8]; } } void Eval_DaJ() // DaJ = D adj(J) = D dI3b^t { eval_state |= HAVE_DaJ; Get_dI3b(); Eval_DZt(dI3b, &DaJ); } void Eval_DJt() // DJt = D J^t { eval_state |= HAVE_DJt; Eval_DZt(J, &DJt); } void Eval_DdI2t() // DdI2t = D dI2^t { eval_state |= HAVE_DdI2t; Get_dI2(); Eval_DZt(dI2, &DdI2t); } public: /// The Jacobian should use column-major storage. InvariantsEvaluator3D(const scalar_t *Jac = NULL) : J(Jac), D_height(), alloc_height(), D(), DaJ(), DJt(), DdI2t(), DXt(), DYt(), eval_state(0) { } ~InvariantsEvaluator3D() { delete [] DYt; delete [] DXt; delete [] DdI2t; delete [] DJt; delete [] DaJ; } /// The Jacobian should use column-major storage. void SetJacobian(const scalar_t *Jac) { J = Jac; eval_state = 0; } /// The @a Deriv matrix is `dof x 3`, using column-major storage. void SetDerivativeMatrix(int height, const scalar_t *Deriv) { eval_state &= ~(HAVE_DaJ | HAVE_DJt | HAVE_DdI2t); if (alloc_height < height) { delete [] DYt; DYt = NULL; delete [] DXt; DXt = NULL; delete [] DdI2t; DdI2t = NULL; delete [] DJt; DJt = NULL; delete [] DaJ; DaJ = NULL; alloc_height = height; } D_height = height; D = Deriv; } scalar_t Get_I1() { if (dont(HAVE_I1 )) { Eval_I1(); } return I1; } scalar_t Get_I1b() { if (dont(HAVE_I1b)) { Eval_I1b(); } return I1b; } scalar_t Get_I2() { if (dont(HAVE_I2 )) { Eval_I2(); } return I2; } scalar_t Get_I2b() { if (dont(HAVE_I2b)) { Eval_I2b(); } return I2b; } scalar_t Get_I3() { if (dont(HAVE_I3b)) { Eval_I3b(); } return I3b*I3b; } scalar_t Get_I3b() { if (dont(HAVE_I3b)) { Eval_I3b(); } return I3b; } const scalar_t *Get_dI1() { if (dont(HAVE_dI1 )) { Eval_dI1(); } return dI1; } const scalar_t *Get_dI1b() { if (dont(HAVE_dI1b)) { Eval_dI1b(); } return dI1b; } const scalar_t *Get_dI2() { if (dont(HAVE_dI2)) { Eval_dI2(); } return dI2; } const scalar_t *Get_dI2b() { if (dont(HAVE_dI2b)) { Eval_dI2b(); } return dI2b; } const scalar_t *Get_dI3() { if (dont(HAVE_dI3)) { Eval_dI3(); } return dI3; } const scalar_t *Get_dI3b() { if (dont(HAVE_dI3b)) { Eval_dI3b(); } return dI3b; } // Assemble operation for tensor X with components X_jslt: // A(i+nd*j,k+nd*l) += (\sum_st w D_is X_jslt D_kt) // 0 <= i,k < nd, 0 <= j,l,s,t < 3 // where nd is the height of D, i.e. the number of DOFs in one component. void Assemble_ddI1(scalar_t w, scalar_t *A) { // ddI1_jslt = 2 I_jslt = 2 δ_jl δ_st // A(i+nd*j,k+nd*l) += (\sum_st 2 w D_is δ_jl δ_st D_kt) // or // A(i+nd*j,k+nd*l) += (2 w) (\sum_s D_is D_ks) δ_jl // A(i+nd*j,k+nd*l) += (2 w) (D D^t)_ik δ_jl const int nd = D_height; const int ah = 3*nd; const scalar_t a = 2*w; for (int i = 0; i < nd; i++) { const int i0 = i+nd*0, i1 = i+nd*1, i2 = i+nd*2; const scalar_t aDi[3] = { a*D[i0], a*D[i1], a*D[i2] }; // k == i const scalar_t aDDt_ii = aDi[0]*D[i0] + aDi[1]*D[i1] + aDi[2]*D[i2]; A[i0+ah*i0] += aDDt_ii; A[i1+ah*i1] += aDDt_ii; A[i2+ah*i2] += aDDt_ii; // 0 <= k < i for (int k = 0; k < i; k++) { const int k0 = k+nd*0, k1 = k+nd*1, k2 = k+nd*2; const scalar_t aDDt_ik = aDi[0]*D[k0] + aDi[1]*D[k1] + aDi[2]*D[k2]; A[i0+ah*k0] += aDDt_ik; A[k0+ah*i0] += aDDt_ik; A[i1+ah*k1] += aDDt_ik; A[k1+ah*i1] += aDDt_ik; A[i2+ah*k2] += aDDt_ik; A[k2+ah*i2] += aDDt_ik; } } } void Assemble_ddI1b(scalar_t w, scalar_t *A) { // Similar to InvariantsEvaluator2D::Assemble_ddI1b(): // // ddI1b = X1 + X2 + X3, where // X1_ijkl = (2/3*I1b/I3) [ (2/3 δ_ks δ_it + δ_kt δ_si) dI3b_tj dI3b_sl ] // = (2/3*I1b/I3) [ 2/3 dI3b_ij dI3b_kl + dI3b_kj dI3b_il ] // X2_ijkl = (2*I3b^{-2/3}) δ_ik δ_jl = (I3b^{-2/3}) ddI1_ijkl // X3_ijkl = -(4/3*I3b^{-5/3}) (δ_ks δ_it) (J_tj dI3b_sl + dI3b_tj J_sl) // = -(4/3*I3b^{-5/3}) (J_ij dI3b_kl + dI3b_ij J_kl) // // A(i+nd*j,k+nd*l) += (\sum_st w D_is ddI1b_jslt D_kt) // or // A(i+nd*j,k+nd*l) += // w (2/3*I1b/I3) [ 2/3 DaJ_ij DaJ_kl + DaJ_il DaJ_kj ] // + w (2*I3b^{-2/3}) (D D^t)_ik δ_jl // - w (4/3*I3b^{-5/3}) [ DJt_ij DaJ_kl + DaJ_ij DJt_kl ] if (dont(HAVE_DaJ)) { Eval_DaJ(); } if (dont(HAVE_DJt)) { Eval_DJt(); } const int nd = D_height; const int ah = 3*nd; const scalar_t r23 = scalar_t(2)/3; const scalar_t r53 = scalar_t(5)/3; const scalar_t a = r23*w*Get_I1b()/Get_I3(); const scalar_t b = 2*w*Get_I3b_p(); const scalar_t c = -r23*b/I3b; for (int i = 0; i < nd; i++) { // A1a_ik_jl = 2/3 a DaJ_ij DaJ_kl, A1b_ik_jl = a DaJ_il DaJ_kj // Symmetries: A1a_ik_jl = A1a_ki_lj = 2/3 A1b_ik_lj = 2/3 A1b_ki_jl // A1_ik_jl = A1_ki_lj = A1b_ik_jl + 2/3 A1b_ik_lj // A1_ik_lj = A1_ki_jl = 2/3 A1b_ik_jl + A1b_ik_lj // k == i: // A1_ii_jl = A1_ii_lj = (5/3) a DaJ_ij DaJ_il // l == j: // A1_ik_jj = A1_ki_jj = (5/3) a DaJ_ij DaJ_kj // k == i && l == j: // A1_ii_jj = (5/3) a DaJ_ij^2 // A2_ik_jl = b (D D^t)_ik δ_jl // Symmetries: // A3_ik_jl = c [ DJt_ij DaJ_kl + DaJ_ij DJt_kl ] // Symmetries: // A3_ik_jl = A3_ki_lj = c [ DJt_ij DaJ_kl + DaJ_ij DJt_kl ] // A3_ik_lj = A3_ki_jl = c [ DJt_il DaJ_kj + DaJ_il DJt_kj ] // k == i: // A3_ii_jl = A3_ii_lj = c [ DJt_ij DaJ_il + DaJ_ij DJt_il ] // l == j: // A3_ik_jj = A3_ki_jj = c [ DJt_ij DaJ_kj + DaJ_ij DJt_kj ] // k == i && l == j: // A3_ii_jj = 2 c DJt_ij DaJ_ij const int i0 = i+nd*0, i1 = i+nd*1, i2 = i+nd*2; const scalar_t aDaJ_i[3] = { a*DaJ[i0], a*DaJ[i1], a*DaJ[i2] }; const scalar_t bD_i[3] = { b*D[i0], b*D[i1], b*D[i2] }; const scalar_t cDJt_i[3] = { c*DJt[i0], c*DJt[i1], c*DJt[i2] }; const scalar_t cDaJ_i[3] = { c*DaJ[i0], c*DaJ[i1], c*DaJ[i2] }; // k == i { // Symmetries: A2_ii_00 = A2_ii_11 = A2_ii_22 const scalar_t A2_ii = bD_i[0]*D[i0]+bD_i[1]*D[i1]+bD_i[2]*D[i2]; A[i0+ah*i0] += (r53*aDaJ_i[0] + 2*cDJt_i[0])*DaJ[i0] + A2_ii; A[i1+ah*i1] += (r53*aDaJ_i[1] + 2*cDJt_i[1])*DaJ[i1] + A2_ii; A[i2+ah*i2] += (r53*aDaJ_i[2] + 2*cDJt_i[2])*DaJ[i2] + A2_ii; // Symmetries: A_ii_jl = A_ii_lj for (int j = 1; j < 3; j++) { const int ij = i+nd*j; for (int l = 0; l < j; l++) { const int il = i+nd*l; const scalar_t A_ii_jl = (r53*aDaJ_i[j] + cDJt_i[j])*DaJ[il] + cDaJ_i[j]*DJt[il]; A[ij+ah*il] += A_ii_jl; A[il+ah*ij] += A_ii_jl; } } } // 0 <= k < i for (int k = 0; k < i; k++) { const int k0 = k+nd*0, k1 = k+nd*1, k2 = k+nd*2; // Symmetries: A2_ik_jj = A2_ki_ll const scalar_t A2_ik = bD_i[0]*D[k0]+bD_i[1]*D[k1]+bD_i[2]*D[k2]; // l == j for (int j = 0; j < 3; j++) { const int ij = i+nd*j, kj = k+nd*j; const scalar_t A_ik_jj = (r53*aDaJ_i[j] + cDJt_i[j])*DaJ[kj] + cDaJ_i[j]*DJt[kj] + A2_ik; A[ij+ah*kj] += A_ik_jj; A[kj+ah*ij] += A_ik_jj; } // 0 <= l < j for (int j = 1; j < 3; j++) { const int ij = i+nd*j, kj = k+nd*j; for (int l = 0; l < j; l++) { const int il = i+nd*l, kl = k+nd*l; // A1b_ik_jl = a DaJ_il DaJ_kj const scalar_t A1b_ik_jl = aDaJ_i[l]*DaJ[kj]; const scalar_t A1b_ik_lj = aDaJ_i[j]*DaJ[kl]; // A1_ik_jl = A1_ki_lj = A1b_ik_jl + 2/3 A1b_ik_lj // A1_ik_lj = A1_ki_jl = 2/3 A1b_ik_jl + A1b_ik_lj // A3_ik_jl = c [ DJt_ij DaJ_kl + DaJ_ij DJt_kl ] const scalar_t A_ik_jl = A1b_ik_jl + r23*A1b_ik_lj + cDJt_i[j]*DaJ[kl]+cDaJ_i[j]*DJt[kl]; A[ij+ah*kl] += A_ik_jl; A[kl+ah*ij] += A_ik_jl; const scalar_t A_ik_lj = r23*A1b_ik_jl + A1b_ik_lj + cDJt_i[l]*DaJ[kj]+cDaJ_i[l]*DJt[kj]; A[il+ah*kj] += A_ik_lj; A[kj+ah*il] += A_ik_lj; } } } } } void Assemble_ddI2(scalar_t w, scalar_t *A) { // dI2 = 2 I_1 J - 2 J J^t J = 2 (I_1 I - B) J // // ddI2 = X1 + X2 + X3 // X1_ijkl = (2 I_1) δ_ik δ_jl // X2_ijkl = 2 ( 2 δ_ku δ_iv - δ_ik δ_uv - δ_kv δ_iu ) J_vj J_ul // X3_ijkl = -2 (J J^t)_ik δ_jl = -2 B_ik δ_jl // // Apply: j->s, i->j, l->t, k->l // X2_jslt = 2 ( δ_lu δ_jv - δ_jl δ_uv + // δ_lu δ_jv - δ_lv δ_ju ) J_vs J_ut // // A(i+nd*j,k+nd*l) += (\sum_st w D_is ddI2_jslt D_kt) // // \sum_st w D_is X1_jslt D_kt = // \sum_st w D_is [ (2 I_1) δ_jl δ_st ] D_kt = // (2 w I_1) D_is δ_jl D_ks = (2 w I_1) (D D^t)_ik δ_jl // // \sum_st w D_is X2_jslt D_kt = // \sum_stuv w D_is [ 2 ( δ_lu δ_jv - δ_jl δ_uv + // δ_lu δ_jv - δ_lv δ_ju ) J_vs J_ut ] D_kt = // \sum_uv 2 w [ δ_lu δ_jv - δ_jl δ_uv + // δ_lu δ_jv - δ_lv δ_ju ] (D J^t)_iv (D J^t)_ku = // 2 w ( DJt_ij DJt_kl - δ_jl (DJt DJt^t)_ik ) + // 2 w ( DJt_ij DJt_kl - DJt_il DJt_kj ) // // \sum_st w D_is X3_jslt D_kt = \sum_st w D_is [ -2 B_jl δ_st ] D_kt = // -2 w (D D^t)_ik B_jl // // A(i+nd*j,k+nd*l) += // (2 w I_1) (D D^t)_ik δ_jl - 2 w (D D^t)_ik B_jl + // 2 w DJt_ij DJt_kl - 2 w (DJt DJt^t)_ik δ_jl + // 2 w ( DJt_ij DJt_kl - DJt_il DJt_kj ) // // The last term is a determinant: rows {i,k} and columns {j,l} of DJt: // | DJt_ij DJt_il | // | DJt_kj DJt_kl | = DJt_ij DJt_kl - DJt_il DJt_kj if (dont(HAVE_DJt)) { Eval_DJt(); } Get_I1(); // evaluates I1 and the diagonal of B if (dont(HAVE_B_offd)) { Eval_B_offd(); } const int nd = D_height; const int ah = 3*nd; const scalar_t a = 2*w; for (int i = 0; i < ah; i++) { const scalar_t avi = a*DJt[i]; A[i+ah*i] += avi*DJt[i]; for (int j = 0; j < i; j++) { const scalar_t aVVt_ij = avi*DJt[j]; A[i+ah*j] += aVVt_ij; A[j+ah*i] += aVVt_ij; } } for (int i = 0; i < nd; i++) { const int i0 = i+nd*0, i1 = i+nd*1, i2 = i+nd*2; const scalar_t aD_i[3] = { a*D[i0], a*D[i1], a*D[i2] }; const scalar_t aDJt_i[3] = { a*DJt[i0], a*DJt[i1], a*DJt[i2] }; // k == i { const scalar_t aDDt_ii = aD_i[0]*D[i0] + aD_i[1]*D[i1] + aD_i[2]*D[i2]; const scalar_t Z1_ii = I1*aDDt_ii - (aDJt_i[0]*DJt[i0] + aDJt_i[1]*DJt[i1] + aDJt_i[2]*DJt[i2]); // l == j for (int j = 0; j < 3; j++) { const int ij = i+nd*j; A[ij+ah*ij] += Z1_ii - aDDt_ii*B[j]; } // l != j const scalar_t Z2_ii_01 = aDDt_ii*B[3]; const scalar_t Z2_ii_02 = aDDt_ii*B[4]; const scalar_t Z2_ii_12 = aDDt_ii*B[5]; A[i0+ah*i1] -= Z2_ii_01; A[i1+ah*i0] -= Z2_ii_01; A[i0+ah*i2] -= Z2_ii_02; A[i2+ah*i0] -= Z2_ii_02; A[i1+ah*i2] -= Z2_ii_12; A[i2+ah*i1] -= Z2_ii_12; } // 0 <= k < i for (int k = 0; k < i; k++) { const int k0 = k+nd*0, k1 = k+nd*1, k2 = k+nd*2; const scalar_t aDDt_ik = aD_i[0]*D[k0] + aD_i[1]*D[k1] + aD_i[2]*D[k2]; const scalar_t Z1_ik = I1*aDDt_ik - (aDJt_i[0]*DJt[k0] + aDJt_i[1]*DJt[k1] + aDJt_i[2]*DJt[k2]); // l == j for (int j = 0; j < 3; j++) { const int ij = i+nd*j, kj = k+nd*j; const scalar_t Z2_ik_jj = Z1_ik - aDDt_ik*B[j]; A[ij+ah*kj] += Z2_ik_jj; A[kj+ah*ij] += Z2_ik_jj; } // l != j { const scalar_t Z2_ik_01 = aDDt_ik*B[3]; A[i0+ah*k1] -= Z2_ik_01; A[i1+ah*k0] -= Z2_ik_01; A[k0+ah*i1] -= Z2_ik_01; A[k1+ah*i0] -= Z2_ik_01; const scalar_t Z2_ik_02 = aDDt_ik*B[4]; A[i0+ah*k2] -= Z2_ik_02; A[i2+ah*k0] -= Z2_ik_02; A[k0+ah*i2] -= Z2_ik_02; A[k2+ah*i0] -= Z2_ik_02; const scalar_t Z2_ik_12 = aDDt_ik*B[5]; A[i1+ah*k2] -= Z2_ik_12; A[i2+ah*k1] -= Z2_ik_12; A[k1+ah*i2] -= Z2_ik_12; A[k2+ah*i1] -= Z2_ik_12; } // 0 <= l < j for (int j = 1; j < 3; j++) { const int ij = i+nd*j, kj = k+nd*j; for (int l = 0; l < j; l++) { const int il = i+nd*l, kl = k+nd*l; const scalar_t Z3_ik_jl = aDJt_i[j]*DJt[kl] - aDJt_i[l]*DJt[kj]; A[ij+ah*kl] += Z3_ik_jl; A[kl+ah*ij] += Z3_ik_jl; A[il+ah*kj] -= Z3_ik_jl; A[kj+ah*il] -= Z3_ik_jl; } } } } } void Assemble_ddI2b(scalar_t w, scalar_t *A) { // dI2b = (-4/3)*I3b^{-7/3}*I2*dI3b + I3b^{-4/3}*dI2 // = I3b^{-4/3} * [ dI2 - (4/3)*I2/I3b*dI3b ] // // ddI2b = X1 + X2 + X3 // X1_ijkl = 16/9 det(J)^{-10/3} I2 dI3b_ij dI3b_kl + // 4/3 det(J)^{-10/3} I2 dI3b_il dI3b_kj // X2_ijkl = -4/3 det(J)^{-7/3} (dI2_ij dI3b_kl + dI2_kl dI3b_ij) // X3_ijkl = det(J)^{-4/3} ddI2_ijkl // // Apply: j->s, i->j, l->t, k->l // X1_jslt = 16/9 det(J)^{-10/3} I2 dI3b_js dI3b_lt + // 4/3 det(J)^{-10/3} I2 dI3b_jt dI3b_ls // X2_jslt = -4/3 det(J)^{-7/3} (dI2_js dI3b_lt + dI2_lt dI3b_js) // // A(i+nd*j,k+nd*l) += (\sum_st w D_is ddI2b_jslt D_kt) // // (\sum_st w D_is X1_jslt D_kt) = // 16/9 w det(J)^{-10/3} I2 DaJ_ij DaJ_kl + // 4/3 w det(J)^{-10/3} I2 DaJ_il DaJ_kj // // (\sum_st w D_is X1_jslt D_kt) = // -4/3 w det(J)^{-7/3} D_is (dI2_js dI3b_lt + dI2_lt dI3b_js) D_kt = // -4/3 w det(J)^{-7/3} [ (D dI2^t)_ij DaJ_kl + DaJ_ij (D dI2^t)_kl ] // // A(i+nd*j,k+nd*l) += // 16/9 w det(J)^{-10/3} I2 DaJ_ij DaJ_kl + // 4/3 w det(J)^{-10/3} I2 DaJ_il DaJ_kj - // 4/3 w det(J)^{-7/3} [ DdI2t_ij DaJ_kl + DaJ_ij DdI2t_kl ] + // w det(J)^{-4/3} D_is D_kt ddI2_jslt Get_I3b_p(); // = det(J)^{-2/3}, evaluates I3b if (dont(HAVE_DaJ)) { Eval_DaJ(); } if (dont(HAVE_DdI2t)) { Eval_DdI2t(); } const int nd = D_height; const int ah = 3*nd; const scalar_t a = w*I3b_p*I3b_p; const scalar_t b = (-4*a)/(3*I3b); const scalar_t c = -b*Get_I2()/I3b; const scalar_t d = (4*c)/3; for (int i = 0; i < ah; i++) { const scalar_t dvi = d*DaJ[i]; A[i+ah*i] += dvi*DaJ[i]; for (int j = 0; j < i; j++) { const scalar_t dVVt_ij = dvi*DaJ[j]; A[i+ah*j] += dVVt_ij; A[j+ah*i] += dVVt_ij; } } Assemble_ddI2(a, A); for (int i = 0; i < nd; i++) { const int i0 = i+nd*0, i1 = i+nd*1, i2 = i+nd*2; const scalar_t cDaJ_i[3] = { c*DaJ[i0], c*DaJ[i1], c*DaJ[i2] }; const scalar_t bDaJ_i[3] = { b*DaJ[i0], b*DaJ[i1], b*DaJ[i2] }; const scalar_t bDdI2t_i[3] = { b*DdI2t[i0], b*DdI2t[i1], b*DdI2t[i2] }; // k == i { // l == j for (int j = 0; j < 3; j++) { const int ij = i+nd*j; A[ij+ah*ij] += (cDaJ_i[j] + 2*bDdI2t_i[j])*DaJ[ij]; } // 0 <= l < j for (int j = 1; j < 3; j++) { const int ij = i+nd*j; for (int l = 0; l < j; l++) { const int il = i+nd*l; const scalar_t Z_ii_jl = (cDaJ_i[l] + bDdI2t_i[l])*DaJ[ij] + bDdI2t_i[j]*DaJ[il]; A[ij+ah*il] += Z_ii_jl; A[il+ah*ij] += Z_ii_jl; } } } // 0 <= k < i for (int k = 0; k < i; k++) { // l == j for (int j = 0; j < 3; j++) { const int ij = i+nd*j, kj = k+nd*j; const scalar_t Z_ik_jj = (cDaJ_i[j] + bDdI2t_i[j])*DaJ[kj] + bDaJ_i[j]*DdI2t[kj]; A[ij+ah*kj] += Z_ik_jj; A[kj+ah*ij] += Z_ik_jj; } // 0 <= l < j for (int j = 1; j < 3; j++) { const int ij = i+nd*j, kj = k+nd*j; for (int l = 0; l < j; l++) { const int il = i+nd*l, kl = k+nd*l; const scalar_t Z_ik_jl = cDaJ_i[l]*DaJ[kj] + bDdI2t_i[j]*DaJ[kl] + bDaJ_i[j]*DdI2t[kl]; A[ij+ah*kl] += Z_ik_jl; A[kl+ah*ij] += Z_ik_jl; const scalar_t Z_ik_lj = cDaJ_i[j]*DaJ[kl] + bDdI2t_i[l]*DaJ[kj] + bDaJ_i[l]*DdI2t[kj]; A[il+ah*kj] += Z_ik_lj; A[kj+ah*il] += Z_ik_lj; } } } } } void Assemble_ddI3(scalar_t w, scalar_t *A) { // Similar to InvariantsEvaluator2D::Assemble_ddI2(): // // A(i+nd*j,k+nd*l) += 2 w [ 2 DaJ_ij DaJ_kl - DaJ_il DaJ_kj ] // // Note: the expression ( DaJ_ij DaJ_kl - DaJ_il DaJ_kj ) is the // determinant of the 2x2 matrix formed by rows {i,k} and columns {j,l} // from the matrix DaJ = D dI3b^t. if (dont(HAVE_DaJ)) { Eval_DaJ(); } const int nd = D_height; const int ah = 3*nd; const scalar_t a = 2*w; for (int i = 0; i < ah; i++) { const scalar_t avi = a*DaJ[i]; A[i+ah*i] += avi*DaJ[i]; for (int j = 0; j < i; j++) { const scalar_t aVVt_ij = avi*DaJ[j]; A[i+ah*j] += aVVt_ij; A[j+ah*i] += aVVt_ij; } } for (int j = 1; j < 3; j++) { for (int l = 0; l < j; l++) { for (int i = 0; i < nd; i++) { const int ij = i+nd*j, il = i+nd*l; const scalar_t aDaJ_ij = a*DaJ[ij], aDaJ_il = a*DaJ[il]; for (int k = 0; k < i; k++) { const int kj = k+nd*j, kl = k+nd*l; const scalar_t A_ijkl = aDaJ_ij*DaJ[kl] - aDaJ_il*DaJ[kj]; A[ij+ah*kl] += A_ijkl; A[kl+ah*ij] += A_ijkl; A[kj+ah*il] -= A_ijkl; A[il+ah*kj] -= A_ijkl; } } } } } void Assemble_ddI3b(scalar_t w, scalar_t *A) { // Similar to InvariantsEvaluator2D::Assemble_ddI2b(): // // A(i+nd*j,k+nd*l) += (w/I3b) [ DaJ_ij DaJ_kl - DaJ_il DaJ_kj ] // // | DaJ_ij DaJ_il | = determinant of rows {i,k}, columns {j,l} from DaJ // | DaJ_kj DaJ_kl | if (dont(HAVE_DaJ)) { Eval_DaJ(); } const int nd = D_height; const int ah = 3*nd; const scalar_t a = w/Get_I3b(); for (int j = 1; j < 3; j++) { for (int l = 0; l < j; l++) { for (int i = 0; i < nd; i++) { const int ij = i+nd*j, il = i+nd*l; const scalar_t aDaJ_ij = a*DaJ[ij], aDaJ_il = a*DaJ[il]; for (int k = 0; k < i; k++) { const int kj = k+nd*j, kl = k+nd*l; const scalar_t A_ijkl = aDaJ_ij*DaJ[kl] - aDaJ_il*DaJ[kj]; A[ij+ah*kl] += A_ijkl; A[kl+ah*ij] += A_ijkl; A[kj+ah*il] -= A_ijkl; A[il+ah*kj] -= A_ijkl; } } } } } // Assemble the contribution from the term: T_ijkl = X_ij Y_kl + Y_ij X_kl, // where X and Y are pointers to 3x3 matrices stored in column-major layout. // // The contribution to the matrix A is given by: // A(i+nd*j,k+nd*l) += \sum_st w D_is T_jslt D_kt // or // A(i+nd*j,k+nd*l) += \sum_st w D_is (X_js Y_lt + Y_js X_lt) D_kt // or // A(i+nd*j,k+nd*l) += // \sum_st w [ (D X^t)_ij (D Y^t)_kl + (D Y^t)_ij (D X^t)_kl ] void Assemble_TProd(scalar_t w, const scalar_t *X, const scalar_t *Y, scalar_t *A) { Eval_DZt(X, &DXt); Eval_DZt(Y, &DYt); const int nd = D_height; const int ah = 3*nd; for (int i = 0; i < ah; i++) { const scalar_t axi = w*DXt[i], ayi = w*DYt[i]; A[i+ah*i] += 2*axi*DYt[i]; for (int j = 0; j < i; j++) { const scalar_t A_ij = axi*DYt[j] + ayi*DXt[j]; A[i+ah*j] += A_ij; A[j+ah*i] += A_ij; } } } // Assemble the contribution from the term: T_ijkl = X_ij X_kl, where X is a // pointer to a 3x3 matrix stored in column-major layout. // // The contribution to the matrix A is given by: // A(i+nd*j,k+nd*l) += \sum_st w D_is X_js X_lt D_kt // or // A(i+nd*j,k+nd*l) += \sum_st w [ (D X^t)_ij (D X^t)_kl ] void Assemble_TProd(scalar_t w, const scalar_t *X, scalar_t *A) { Eval_DZt(X, &DXt); const int nd = D_height; const int ah = 3*nd; for (int i = 0; i < ah; i++) { const scalar_t axi = w*DXt[i]; A[i+ah*i] += axi*DXt[i]; for (int j = 0; j < i; j++) { const scalar_t A_ij = axi*DXt[j]; A[i+ah*j] += A_ij; A[j+ah*i] += A_ij; } } } }; } #endif