// Copyright (c) 2010-2023, Lawrence Livermore National Security, LLC. Produced // at the Lawrence Livermore National Laboratory. All Rights reserved. See files // LICENSE and NOTICE for details. LLNL-CODE-806117. // // This file is part of the MFEM library. For more information and source code // availability visit https://mfem.org. // // MFEM is free software; you can redistribute it and/or modify it under the // terms of the BSD-3 license. We welcome feedback and contributions, see file // CONTRIBUTING.md for details. // // ------------------------------------------------- // Minimal Surface Miniapp: Compute minimal surfaces // ------------------------------------------------- // // This miniapp solves Plateau's problem: the Dirichlet problem for the minimal // surface equation. // // Two problems can be run: // // - Problem 0 solves the minimal surface equation of parametric surfaces. // The surface (-s) option allow the selection of different // parametrization: // s=0: Uses the given mesh from command line options // s=1: Catenoid // s=2: Helicoid // s=3: Enneper // s=4: Hold // s=5: Costa // s=6: Shell // s=7: Scherk // s=8: FullPeach // s=9: QuarterPeach // s=10: SlottedSphere // // - Problem 1 solves the minimal surface equation of the form z=f(x,y), // for the Dirichlet problem, using Picard iterations: // -div( q grad u) = 0, with q(u) = (1 + |∇u|²)^{-1/2} // // Compile with: make minimal-surface // // Sample runs: minimal-surface // minimal-surface -a // minimal-surface -c // minimal-surface -c -a // minimal-surface -no-pa // minimal-surface -no-pa -a // minimal-surface -no-pa -a -c // minimal-surface -p 1 // // Device sample runs: // minimal-surface -d debug // minimal-surface -d debug -a // minimal-surface -d debug -c // minimal-surface -d debug -c -a // minimal-surface -d cuda // minimal-surface -d cuda -a // minimal-surface -d cuda -c // minimal-surface -d cuda -c -a // minimal-surface -d cuda -no-pa // minimal-surface -d cuda -no-pa -a // minimal-surface -d cuda -no-pa -c // minimal-surface -d cuda -no-pa -c -a #include "mfem.hpp" #include "../../general/forall.hpp" using namespace mfem; // Constant variables constexpr int DIM = 2; constexpr int SDIM = 3; constexpr double PI = M_PI; constexpr double NRM = 1.e-4; constexpr double EPS = 1.e-14; constexpr Element::Type QUAD = Element::QUADRILATERAL; constexpr double NL_DMAX = std::numeric_limits::max(); // Static variables for GLVis constexpr int GLVIZ_W = 1024; constexpr int GLVIZ_H = 1024; constexpr int visport = 19916; constexpr char vishost[] = "localhost"; // Context/Options for the solver struct Opt { int sz, id; int pb = 0; int nx = 6; int ny = 6; int order = 3; int refine = 2; int niters = 8; int surface = 5; bool pa = true; bool vis = true; bool amr = false; bool wait = false; bool print = false; bool radial = false; bool by_vdim = false; bool snapshot = false; bool vis_mesh = false; double tau = 1.0; double lambda = 0.1; double amr_threshold = 0.6; const char *keys = "gAm"; const char *device_config = "cpu"; const char *mesh_file = "../../data/mobius-strip.mesh"; void (*Tptr)(const Vector&, Vector&) = nullptr; }; class Surface: public Mesh { protected: Opt &opt; Mesh *mesh; Array bc; socketstream glvis; H1_FECollection *fec; FiniteElementSpace *fes; public: // Reading from mesh file Surface(Opt &opt, const char *file): Mesh(file, true), opt(opt) { } // Generate 2D empty surface mesh Surface(Opt &opt, bool): Mesh(), opt(opt) { } // Generate 2D quad surface mesh Surface(Opt &opt) : Mesh(Mesh::MakeCartesian2D(opt.nx, opt.ny, QUAD, true)), opt(opt) { } // Generate 2D generic surface mesh Surface(Opt &opt, int nv, int ne, int nbe): Mesh(DIM, nv, ne, nbe, SDIM), opt(opt) { } void Create() { if (opt.surface > 0) { Prefix(); Transform(); } Postfix(); Refine(); Snap(); fec = new H1_FECollection(opt.order, DIM); if (opt.amr) { EnsureNCMesh(); } mesh = new Mesh(*this, true); fes = new FiniteElementSpace(mesh, fec, opt.by_vdim ? 1 : SDIM); BoundaryConditions(); } int Solve() { // Initialize GLVis server if 'visualization' is set if (opt.vis) { opt.vis = glvis.open(vishost, visport) == 0; } // Send to GLVis the first mesh if (opt.vis) { Visualize(glvis, opt, mesh, GLVIZ_W, GLVIZ_H); } // Create and launch the surface solver if (opt.by_vdim) { ByVDim(*this, opt).Solve(); } else { ByNodes(*this, opt).Solve(); } if (opt.vis && opt.snapshot) { opt.keys = "Sq"; Visualize(glvis, opt, mesh, mesh->GetNodes()); } return 0; } ~Surface() { if (opt.vis) { glvis.close(); } delete mesh; delete fec; delete fes; } virtual void Prefix() { SetCurvature(opt.order, false, SDIM, Ordering::byNODES); } virtual void Transform() { if (opt.Tptr) { Mesh::Transform(opt.Tptr); } } virtual void Postfix() { SetCurvature(opt.order, false, SDIM, Ordering::byNODES); } virtual void Refine() { for (int l = 0; l < opt.refine; l++) { UniformRefinement(); } } virtual void Snap() { GridFunction &nodes = *GetNodes(); for (int i = 0; i < nodes.Size(); i++) { if (std::abs(nodes(i)) < EPS) { nodes(i) = 0.0; } } } void SnapNodesToUnitSphere() { Vector node(SDIM); GridFunction &nodes = *GetNodes(); for (int i = 0; i < nodes.FESpace()->GetNDofs(); i++) { for (int d = 0; d < SDIM; d++) { node(d) = nodes(nodes.FESpace()->DofToVDof(i, d)); } node /= node.Norml2(); for (int d = 0; d < SDIM; d++) { nodes(nodes.FESpace()->DofToVDof(i, d)) = node(d); } } } virtual void BoundaryConditions() { if (bdr_attributes.Size()) { Array ess_bdr(bdr_attributes.Max()); ess_bdr = 1; bc.HostReadWrite(); fes->GetEssentialTrueDofs(ess_bdr, bc); } } // Initialize visualization of some given mesh static void Visualize(socketstream &glvis, Opt &opt, const Mesh *mesh, const int w, const int h, const GridFunction *sol = nullptr) { const GridFunction &solution = sol ? *sol : *mesh->GetNodes(); if (opt.vis_mesh) { glvis << "mesh\n" << *mesh; } else { glvis << "solution\n" << *mesh << solution; } glvis.precision(8); glvis << "window_size " << w << " " << h << "\n"; glvis << "keys " << opt.keys << "\n"; opt.keys = nullptr; if (opt.wait) { glvis << "pause\n"; } glvis << std::flush; } // Visualize some solution on the given mesh static void Visualize(socketstream &glvis, const Opt &opt, const Mesh *mesh, const GridFunction *sol = nullptr) { const GridFunction &solution = sol ? *sol : *mesh->GetNodes(); if (opt.vis_mesh) { glvis << "mesh\n" << *mesh; } else { glvis << "solution\n" << *mesh << solution; } if (opt.wait) { glvis << "pause\n"; } if (opt.snapshot && opt.keys) { glvis << "keys " << opt.keys << "\n"; } glvis << std::flush; } using Mesh::Print; static void Print(const Opt &opt, Mesh *mesh, const GridFunction *sol) { const char *mesh_file = "surface.mesh"; const char *sol_file = "sol.gf"; if (!opt.id) { mfem::out << "Printing " << mesh_file << ", " << sol_file << std::endl; } std::ofstream mesh_ofs(mesh_file); mesh_ofs.precision(8); mesh->Print(mesh_ofs); mesh_ofs.close(); std::ofstream sol_ofs(sol_file); sol_ofs.precision(8); sol->Save(sol_ofs); sol_ofs.close(); } // Surface Solver class class Solver { protected: Opt &opt; Surface &S; CGSolver cg; OperatorPtr A; BilinearForm a; GridFunction x, x0, b; ConstantCoefficient one; mfem::Solver *M = nullptr; const int print_iter = -1, max_num_iter = 2000; const double RTOLERANCE = EPS, ATOLERANCE = EPS*EPS; public: Solver(Surface &S, Opt &opt): opt(opt), S(S), cg(), a(S.fes), x(S.fes), x0(S.fes), b(S.fes), one(1.0) { cg.SetRelTol(RTOLERANCE); cg.SetAbsTol(ATOLERANCE); cg.SetMaxIter(max_num_iter); cg.SetPrintLevel(print_iter); } ~Solver() { delete M; } void Solve() { constexpr bool converged = true; if (opt.pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL);} for (int i=0; i < opt.niters; ++i) { if (opt.amr) { Amr(); } if (opt.vis) { Surface::Visualize(S.glvis, opt, S.mesh); } if (!opt.id) { mfem::out << "Iteration " << i << ": "; } S.mesh->NodesUpdated(); a.Update(); a.Assemble(); if (Step() == converged) { break; } } if (opt.print) { Surface::Print(opt, S.mesh, S.mesh->GetNodes()); } } virtual bool Step() = 0; protected: bool Converged(const double rnorm) { return rnorm < NRM; } bool ParAXeqB() { b = 0.0; Vector X, B; a.FormLinearSystem(S.bc, x, b, A, X, B); if (!opt.pa) { M = new GSSmoother((SparseMatrix&)(*A)); } if (M) { cg.SetPreconditioner(*M); } cg.SetOperator(*A); cg.Mult(B, X); a.RecoverFEMSolution(X, b, x); const bool by_vdim = opt.by_vdim; GridFunction *nodes = by_vdim ? &x0 : S.fes->GetMesh()->GetNodes(); x.HostReadWrite(); nodes->HostRead(); double rnorm = nodes->DistanceTo(x) / nodes->Norml2(); if (!opt.id) { mfem::out << "rnorm = " << rnorm << std::endl; } const double lambda = opt.lambda; if (by_vdim) { MFEM_VERIFY(!opt.radial,"'VDim solver can't use radial option!"); return Converged(rnorm); } if (opt.radial) { GridFunction delta(S.fes); subtract(x, *nodes, delta); // delta = x - nodes // position and Δ vectors at point i Vector ni(SDIM), di(SDIM); for (int i = 0; i < delta.Size()/SDIM; i++) { // extract local vectors const int ndof = S.fes->GetNDofs(); for (int d = 0; d < SDIM; d++) { ni(d) = (*nodes)(d*ndof + i); di(d) = delta(d*ndof + i); } // project the delta vector in radial direction const double ndotd = (ni*di) / (ni*ni); di.Set(ndotd,ni); // set global vectors for (int d = 0; d < SDIM; d++) { delta(d*ndof + i) = di(d); } } add(*nodes, delta, *nodes); } // x = lambda*nodes + (1-lambda)*x add(lambda, *nodes, (1.0-lambda), x, x); return Converged(rnorm); } void Amr() { MFEM_VERIFY(opt.amr_threshold >= 0.0 && opt.amr_threshold <= 1.0, ""); Mesh *smesh = S.mesh; Array amr; const int NE = smesh->GetNE(); DenseMatrix Jadjt, Jadj(DIM, SDIM); for (int e = 0; e < NE; e++) { double minW = +NL_DMAX; double maxW = -NL_DMAX; ElementTransformation *eTr = smesh->GetElementTransformation(e); const Geometry::Type &type = smesh->GetElement(e)->GetGeometryType(); const IntegrationRule *ir = &IntRules.Get(type, opt.order); const int NQ = ir->GetNPoints(); for (int q = 0; q < NQ; q++) { eTr->SetIntPoint(&ir->IntPoint(q)); const DenseMatrix &J = eTr->Jacobian(); CalcAdjugate(J, Jadj); Jadjt = Jadj; Jadjt.Transpose(); const double w = Jadjt.Weight(); minW = std::fmin(minW, w); maxW = std::fmax(maxW, w); } if (std::fabs(maxW) != 0.0) { const double rho = minW / maxW; MFEM_VERIFY(rho <= 1.0, ""); if (rho < opt.amr_threshold) { amr.Append(Refinement(e)); } } } if (amr.Size()>0) { smesh->GetNodes()->HostReadWrite(); smesh->GeneralRefinement(amr); S.fes->Update(); x.HostReadWrite(); x.Update(); a.Update(); b.HostReadWrite(); b.Update(); S.BoundaryConditions(); } } }; // Surface solver 'by vector' class ByNodes: public Solver { public: ByNodes(Surface &S, Opt &opt): Solver(S, opt) { a.AddDomainIntegrator(new VectorDiffusionIntegrator(one)); } bool Step() { x = *S.fes->GetMesh()->GetNodes(); bool converge = ParAXeqB(); S.mesh->SetNodes(x); return converge ? true : false; } }; // Surface solver 'by ByVDim' class ByVDim: public Solver { public: void SetNodes(const GridFunction &Xi, const int c) { auto d_Xi = Xi.Read(); auto d_nodes = S.fes->GetMesh()->GetNodes()->Write(); const int ndof = S.fes->GetNDofs(); mfem::forall(ndof, [=] MFEM_HOST_DEVICE (int i) { d_nodes[c*ndof + i] = d_Xi[i]; }); } void GetNodes(GridFunction &Xi, const int c) { auto d_Xi = Xi.Write(); const int ndof = S.fes->GetNDofs(); auto d_nodes = S.fes->GetMesh()->GetNodes()->Read(); mfem::forall(ndof, [=] MFEM_HOST_DEVICE (int i) { d_Xi[i] = d_nodes[c*ndof + i]; }); } ByVDim(Surface &S, Opt &opt): Solver(S, opt) { a.AddDomainIntegrator(new DiffusionIntegrator(one)); } bool Step() { bool cvg[SDIM] {false}; for (int c=0; c < SDIM; ++c) { GetNodes(x, c); x0 = x; cvg[c] = ParAXeqB(); SetNodes(x, c); } const bool converged = cvg[0] && cvg[1] && cvg[2]; return converged ? true : false; } }; }; // #0: Default surface mesh file struct MeshFromFile: public Surface { MeshFromFile(Opt &opt): Surface(opt, opt.mesh_file) { } }; // #1: Catenoid surface struct Catenoid: public Surface { Catenoid(Opt &opt): Surface((opt.Tptr = Parametrization, opt)) { } void Prefix() { SetCurvature(opt.order, false, SDIM, Ordering::byNODES); Array v2v(GetNV()); for (int i = 0; i < v2v.Size(); i++) { v2v[i] = i; } // identify vertices on vertical lines for (int j = 0; j <= opt.ny; j++) { const int v_old = opt.nx + j * (opt.nx + 1); const int v_new = j * (opt.nx + 1); v2v[v_old] = v_new; } // renumber elements for (int i = 0; i < GetNE(); i++) { Element *el = GetElement(i); int *v = el->GetVertices(); const int nv = el->GetNVertices(); for (int j = 0; j < nv; j++) { v[j] = v2v[v[j]]; } } // renumber boundary elements for (int i = 0; i < GetNBE(); i++) { Element *el = GetBdrElement(i); int *v = el->GetVertices(); const int nv = el->GetNVertices(); for (int j = 0; j < nv; j++) { v[j] = v2v[v[j]]; } } RemoveUnusedVertices(); RemoveInternalBoundaries(); } static void Parametrization(const Vector &x, Vector &p) { p.SetSize(SDIM); // u in [0,2π] and v in [-π/6,π/6] const double u = 2.0*PI*x[0]; const double v = PI*(x[1]-0.5)/3.; p[0] = cos(u); p[1] = sin(u); p[2] = v; } }; // #2: Helicoid surface struct Helicoid: public Surface { Helicoid(Opt &opt): Surface((opt.Tptr = Parametrization, opt)) { } static void Parametrization(const Vector &x, Vector &p) { p.SetSize(SDIM); // u in [0,2π] and v in [-2π/3,2π/3] const double u = 2.0*PI*x[0]; const double v = 2.0*PI*(2.0*x[1]-1.0)/3.0; p(0) = sin(u)*v; p(1) = cos(u)*v; p(2) = u; } }; // #3: Enneper's surface struct Enneper: public Surface { Enneper(Opt &opt): Surface((opt.Tptr = Parametrization, opt)) { } static void Parametrization(const Vector &x, Vector &p) { p.SetSize(SDIM); // (u,v) in [-2, +2] const double u = 4.0*(x[0]-0.5); const double v = 4.0*(x[1]-0.5); p[0] = +u - u*u*u/3.0 + u*v*v; p[1] = -v - u*u*v + v*v*v/3.0; p[2] = u*u - v*v; } }; // #4: Hold surface struct Hold: public Surface { Hold(Opt &opt): Surface((opt.Tptr = Parametrization, opt)) { } void Prefix() { SetCurvature(opt.order, false, SDIM, Ordering::byNODES); Array v2v(GetNV()); for (int i = 0; i < v2v.Size(); i++) { v2v[i] = i; } // identify vertices on vertical lines for (int j = 0; j <= opt.ny; j++) { const int v_old = opt.nx + j * (opt.nx + 1); const int v_new = j * (opt.nx + 1); v2v[v_old] = v_new; } // renumber elements for (int i = 0; i < GetNE(); i++) { Element *el = GetElement(i); int *v = el->GetVertices(); const int nv = el->GetNVertices(); for (int j = 0; j < nv; j++) { v[j] = v2v[v[j]]; } } // renumber boundary elements for (int i = 0; i < GetNBE(); i++) { Element *el = GetBdrElement(i); int *v = el->GetVertices(); const int nv = el->GetNVertices(); for (int j = 0; j < nv; j++) { v[j] = v2v[v[j]]; } } RemoveUnusedVertices(); RemoveInternalBoundaries(); } static void Parametrization(const Vector &x, Vector &p) { p.SetSize(SDIM); // u in [0,2π] and v in [0,1] const double u = 2.0*PI*x[0]; const double v = x[1]; p[0] = cos(u)*(1.0 + 0.3*sin(3.*u + PI*v)); p[1] = sin(u)*(1.0 + 0.3*sin(3.*u + PI*v)); p[2] = v; } }; // #5: Costa minimal surface #include using cdouble = std::complex; #define I cdouble(0.0, 1.0) // https://dlmf.nist.gov/20.2 cdouble EllipticTheta(const int a, const cdouble u, const cdouble q) { cdouble J = 0.0; double delta = std::numeric_limits::max(); switch (a) { case 1: for (int n=0; delta > EPS; n+=1) { const cdouble j = pow(-1,n)*pow(q,n*(n+1.0))*sin((2.0*n+1.0)*u); delta = abs(j); J += j; } return 2.0*pow(q,0.25)*J; case 2: for (int n=0; delta > EPS; n+=1) { const cdouble j = pow(q,n*(n+1))*cos((2.0*n+1.0)*u); delta = abs(j); J += j; } return 2.0*pow(q,0.25)*J; case 3: for (int n=1; delta > EPS; n+=1) { const cdouble j = pow(q,n*n)*cos(2.0*n*u); delta = abs(j); J += j; } return 1.0 + 2.0*J; case 4: for (int n=1; delta > EPS; n+=1) { const cdouble j =pow(-1,n)*pow(q,n*n)*cos(2.0*n*u); delta = abs(j); J += j; } return 1.0 + 2.0*J; } return J; } // https://dlmf.nist.gov/23.6#E5 cdouble WeierstrassP(const cdouble z, const cdouble w1 = 0.5, const cdouble w3 = 0.5*I) { const cdouble tau = w3/w1; const cdouble q = exp(I*M_PI*tau); const cdouble e1 = M_PI*M_PI/(12.0*w1*w1)* (1.0*pow(EllipticTheta(2,0,q),4) + 2.0*pow(EllipticTheta(4,0,q),4)); const cdouble u = M_PI*z / (2.0*w1); const cdouble P = M_PI * EllipticTheta(3,0,q)*EllipticTheta(4,0,q) * EllipticTheta(2,u,q)/(2.0*w1*EllipticTheta(1,u,q)); return P*P + e1; } cdouble EllipticTheta1Prime(const int k, const cdouble u, const cdouble q) { cdouble J = 0.0; double delta = std::numeric_limits::max(); for (int n=0; delta > EPS; n+=1) { const double alpha = 2.0*n+1.0; const cdouble Dcosine = pow(alpha,k)*sin(k*M_PI/2.0 + alpha*u); const cdouble j = pow(-1,n)*pow(q,n*(n+1.0))*Dcosine; delta = abs(j); J += j; } return 2.0*pow(q,0.25)*J; } // Logarithmic Derivative of Theta Function 1 cdouble LogEllipticTheta1Prime(const cdouble u, const cdouble q) { cdouble J = 0.0; double delta = std::numeric_limits::max(); for (int n=1; delta > EPS; n+=1) { cdouble q2n = pow(q, 2*n); if (abs(q2n) < EPS) { q2n = 0.0; } const cdouble j = q2n/(1.0-q2n)*sin(2.0*n*u); delta = abs(j); J += j; } return 1.0/tan(u) + 4.0*J; } // https://dlmf.nist.gov/23.6#E13 cdouble WeierstrassZeta(const cdouble z, const cdouble w1 = 0.5, const cdouble w3 = 0.5*I) { const cdouble tau = w3/w1; const cdouble q = exp(I*M_PI*tau); const cdouble n1 = -M_PI*M_PI/(12.0*w1) * (EllipticTheta1Prime(3,0,q)/ EllipticTheta1Prime(1,0,q)); const cdouble u = M_PI*z / (2.0*w1); return z*n1/w1 + M_PI/(2.0*w1)*LogEllipticTheta1Prime(u,q); } // https://www.mathcurve.com/surfaces.gb/costa/costa.shtml static double ALPHA[4] {0.0}; struct Costa: public Surface { Costa(Opt &opt): Surface((opt.Tptr = Parametrization, opt), false) { } void Prefix() { ALPHA[3] = opt.tau; const int nx = opt.nx, ny = opt.ny; MFEM_VERIFY(nx>2 && ny>2, ""); const int nXhalf = (nx%2)==0 ? 4 : 2; const int nYhalf = (ny%2)==0 ? 4 : 2; const int nxh = nXhalf + nYhalf; const int NVert = (nx+1) * (ny+1); const int NElem = nx*ny - 4 - nxh; const int NBdrElem = 0; InitMesh(DIM, SDIM, NVert, NElem, NBdrElem); // Sets vertices and the corresponding coordinates for (int j = 0; j <= ny; j++) { const double cy = ((double) j / ny) ; for (int i = 0; i <= nx; i++) { const double cx = ((double) i / nx); const double coords[SDIM] = {cx, cy, 0.0}; AddVertex(coords); } } // Sets elements and the corresponding indices of vertices for (int j = 0; j < ny; j++) { for (int i = 0; i < nx; i++) { if (i == 0 && j == 0) { continue; } if (i+1 == nx && j == 0) { continue; } if (i == 0 && j+1 == ny) { continue; } if (i+1 == nx && j+1 == ny) { continue; } if ((j == 0 || j+1 == ny) && (abs(nx-(i<<1)-1)<=1)) { continue; } if ((i == 0 || i+1 == nx) && (abs(ny-(j<<1)-1)<=1)) { continue; } const int i0 = i + j*(nx+1); const int i1 = i+1 + j*(nx+1); const int i2 = i+1 + (j+1)*(nx+1); const int i3 = i + (j+1)*(nx+1); const int ind[4] = {i0, i1, i2, i3}; AddQuad(ind); } } RemoveUnusedVertices(); FinalizeQuadMesh(false, 0, true); FinalizeTopology(); SetCurvature(opt.order, false, SDIM, Ordering::byNODES); } static void Parametrization(const Vector &X, Vector &p) { const double tau = ALPHA[3]; Vector x = X; x -= +0.5; x *= tau; x -= -0.5; p.SetSize(3); const bool y_top = x[1] > 0.5; const bool x_top = x[0] > 0.5; double u = x[0]; double v = x[1]; if (y_top) { v = 1.0 - x[1]; } if (x_top) { u = 1.0 - x[0]; } const cdouble w = u + I*v; const cdouble w3 = I/2.; const cdouble w1 = 1./2.; const cdouble pw = WeierstrassP(w); const cdouble e1 = WeierstrassP(0.5); const cdouble zw = WeierstrassZeta(w); const cdouble dw = WeierstrassZeta(w-w1) - WeierstrassZeta(w-w3); p[0] = real(PI*(u+PI/(4.*e1))- zw +PI/(2.*e1)*(dw)); p[1] = real(PI*(v+PI/(4.*e1))-I*zw-PI*I/(2.*e1)*(dw)); p[2] = sqrt(PI/2.)*log(abs((pw-e1)/(pw+e1))); if (y_top) { p[1] *= -1.0; } if (x_top) { p[0] *= -1.0; } const bool nan = std::isnan(p[0]) || std::isnan(p[1]) || std::isnan(p[2]); MFEM_VERIFY(!nan, "nan"); ALPHA[0] = std::fmax(p[0], ALPHA[0]); ALPHA[1] = std::fmax(p[1], ALPHA[1]); ALPHA[2] = std::fmax(p[2], ALPHA[2]); } void Snap() { Vector node(SDIM); MFEM_VERIFY(ALPHA[0] > 0.0,""); MFEM_VERIFY(ALPHA[1] > 0.0,""); MFEM_VERIFY(ALPHA[2] > 0.0,""); GridFunction &nodes = *GetNodes(); const double phi = (1.0 + sqrt(5.0)) / 2.0; for (int i = 0; i < nodes.FESpace()->GetNDofs(); i++) { for (int d = 0; d < SDIM; d++) { const double alpha = d==2 ? phi : 1.0; const int vdof = nodes.FESpace()->DofToVDof(i, d); nodes(vdof) /= alpha * ALPHA[d]; } } } }; // #6: Shell surface model struct Shell: public Surface { Shell(Opt &opt): Surface((opt.niters = 1, opt.Tptr = Parametrization, opt)) { } static void Parametrization(const Vector &x, Vector &p) { p.SetSize(3); // u in [0,2π] and v in [-15, 6] const double u = 2.0*PI*x[0]; const double v = 21.0*x[1]-15.0; p[0] = +1.0*pow(1.16,v)*cos(v)*(1.0+cos(u)); p[1] = -1.0*pow(1.16,v)*sin(v)*(1.0+cos(u)); p[2] = -2.0*pow(1.16,v)*(1.0+sin(u)); } }; // #7: Scherk's doubly periodic surface struct Scherk: public Surface { static void Parametrization(const Vector &x, Vector &p) { p.SetSize(SDIM); const double alpha = 0.49; // (u,v) in [-απ, +απ] const double u = alpha*PI*(2.0*x[0]-1.0); const double v = alpha*PI*(2.0*x[1]-1.0); p[0] = u; p[1] = v; p[2] = log(cos(v)/cos(u)); } Scherk(Opt &opt): Surface((opt.Tptr = Parametrization, opt)) { } }; // #8: Full Peach street model struct FullPeach: public Surface { static constexpr int NV = 8; static constexpr int NE = 6; FullPeach(Opt &opt): Surface((opt.niters = std::min(4, opt.niters), opt), NV, NE, 0) { } void Prefix() { const double quad_v[NV][SDIM] = { {-1, -1, -1}, {+1, -1, -1}, {+1, +1, -1}, {-1, +1, -1}, {-1, -1, +1}, {+1, -1, +1}, {+1, +1, +1}, {-1, +1, +1} }; const int quad_e[NE][4] = { {3, 2, 1, 0}, {0, 1, 5, 4}, {1, 2, 6, 5}, {2, 3, 7, 6}, {3, 0, 4, 7}, {4, 5, 6, 7} }; for (int j = 0; j < NV; j++) { AddVertex(quad_v[j]); } for (int j = 0; j < NE; j++) { AddQuad(quad_e[j], j+1); } FinalizeQuadMesh(false, 0, true); FinalizeTopology(false); UniformRefinement(); SetCurvature(opt.order, false, SDIM, Ordering::byNODES); } void Snap() { SnapNodesToUnitSphere(); } void BoundaryConditions() { Vector X(SDIM); Array dofs; Array ess_vdofs, ess_tdofs; ess_vdofs.SetSize(fes->GetVSize()); MFEM_VERIFY(fes->GetVSize() >= fes->GetTrueVSize(),""); ess_vdofs = 0; DenseMatrix PointMat; mesh->GetNodes()->HostRead(); for (int e = 0; e < fes->GetNE(); e++) { fes->GetElementDofs(e, dofs); const IntegrationRule &ir = fes->GetFE(e)->GetNodes(); ElementTransformation *eTr = mesh->GetElementTransformation(e); eTr->Transform(ir, PointMat); Vector one(dofs.Size()); for (int dof = 0; dof < dofs.Size(); dof++) { one = 0.0; one[dof] = 1.0; const int k = dofs[dof]; MFEM_ASSERT(k >= 0, ""); PointMat.Mult(one, X); const bool halfX = std::fabs(X[0]) < EPS && X[1] <= 0.0; const bool halfY = std::fabs(X[2]) < EPS && X[1] >= 0.0; const bool is_on_bc = halfX || halfY; for (int c = 0; c < SDIM; c++) { ess_vdofs[fes->DofToVDof(k, c)] = is_on_bc; } } } const SparseMatrix *R = fes->GetRestrictionMatrix(); if (!R) { ess_tdofs.MakeRef(ess_vdofs); } else { R->BooleanMult(ess_vdofs, ess_tdofs); } bc.HostReadWrite(); FiniteElementSpace::MarkerToList(ess_tdofs, bc); } }; // #9: 1/4th Peach street model struct QuarterPeach: public Surface { QuarterPeach(Opt &opt): Surface((opt.Tptr = Parametrization, opt)) { } static void Parametrization(const Vector &X, Vector &p) { p = X; const double x = 2.0*X[0]-1.0; const double y = X[1]; const double r = sqrt(x*x + y*y); const double t = (x==0.0) ? PI/2.0 : (y==0.0 && x>0.0) ? 0. : (y==0.0 && x<0.0) ? PI : acos(x/r); const double sqrtx = sqrt(1.0 + x*x); const double sqrty = sqrt(1.0 + y*y); const bool yaxis = PI/4.0 vertices; GetFaceVertices(fn, vertices); const GridFunction *nodes = GetNodes(); Vector nval; double R[2], X[2][SDIM]; for (int v = 0; v < 2; v++) { R[v] = 0.0; const int iv = vertices[v]; for (int d = 0; d < SDIM; d++) { nodes->GetNodalValues(nval, d+1); const double x = X[v][d] = nval[iv]; if (d < 2) { R[v] += x*x; } } } if (std::fabs(X[0][1])<=EPS && std::fabs(X[1][1])<=EPS && (R[0]>0.1 || R[1]>0.1)) { el->SetAttribute(1); } else { el->SetAttribute(2); } } } }; // #10: Slotted sphere mesh struct SlottedSphere: public Surface { SlottedSphere(Opt &opt): Surface((opt.niters = 4, opt), 64, 40, 0) { } void Prefix() { constexpr double delta = 0.15; constexpr int NV1D = 4; constexpr int NV = NV1D*NV1D*NV1D; constexpr int NEPF = (NV1D-1)*(NV1D-1); constexpr int NE = NEPF*6; const double V1D[NV1D] = {-1.0, -delta, delta, 1.0}; double QV[NV][3]; for (int iv=0; ivCreate(); S->Solve(); delete S; return 0; } // Problem 1: solve the Dirichlet problem for the minimal surface equation // of the form z=f(x,y), using Picard iterations. static double u0(const Vector &x) { return sin(3.0 * PI * (x[1] + x[0])); } enum {NORM, AREA}; static double qf(const int order, const int ker, Mesh &m, FiniteElementSpace &fes, GridFunction &u) { const Geometry::Type type = m.GetElementBaseGeometry(0); const IntegrationRule &ir(IntRules.Get(type, order)); const QuadratureInterpolator *qi(fes.GetQuadratureInterpolator(ir)); const int NE(m.GetNE()); const int ND(fes.GetFE(0)->GetDof()); const int NQ(ir.GetNPoints()); const int flags = GeometricFactors::JACOBIANS|GeometricFactors::DETERMINANTS; const GeometricFactors *geom = m.GetGeometricFactors(ir, flags); const int D1D = fes.GetFE(0)->GetOrder() + 1; const int Q1D = IntRules.Get(Geometry::SEGMENT, ir.GetOrder()).GetNPoints(); MFEM_VERIFY(ND == D1D*D1D, ""); MFEM_VERIFY(NQ == Q1D*Q1D, ""); Vector Eu(ND*NE), grad_u(DIM*NQ*NE), sum(NE*NQ), one(NE*NQ); qi->SetOutputLayout(QVectorLayout::byVDIM); const ElementDofOrdering e_ordering = ElementDofOrdering::LEXICOGRAPHIC; const Operator *G(fes.GetElementRestriction(e_ordering)); G->Mult(u, Eu); qi->Derivatives(Eu, grad_u); auto W = Reshape(ir.GetWeights().Read(), Q1D, Q1D); auto J = Reshape(geom->J.Read(), Q1D, Q1D, DIM, DIM, NE); auto detJ = Reshape(geom->detJ.Read(), Q1D, Q1D, NE); auto grdU = Reshape(grad_u.Read(), DIM, Q1D, Q1D, NE); auto S = Reshape(sum.Write(), Q1D, Q1D, NE); mfem::forall_2D(NE, Q1D, Q1D, [=] MFEM_HOST_DEVICE (int e) { MFEM_FOREACH_THREAD(qy,y,Q1D) { MFEM_FOREACH_THREAD(qx,x,Q1D) { const double w = W(qx, qy); const double J11 = J(qx, qy, 0, 0, e); const double J12 = J(qx, qy, 1, 0, e); const double J21 = J(qx, qy, 0, 1, e); const double J22 = J(qx, qy, 1, 1, e); const double det = detJ(qx, qy, e); const double area = w * det; const double gu0 = grdU(0, qx, qy, e); const double gu1 = grdU(1, qx, qy, e); const double tgu0 = (J22*gu0 - J12*gu1)/det; const double tgu1 = (J11*gu1 - J21*gu0)/det; const double ngu = tgu0*tgu0 + tgu1*tgu1; const double s = (ker == AREA) ? sqrt(1.0 + ngu) : (ker == NORM) ? ngu : 0.0; S(qx, qy, e) = area * s; } } }); one = 1.0; return sum * one; } static int Problem1(Opt &opt) { const int order = opt.order; Mesh mesh = Mesh::MakeCartesian2D(opt.nx, opt.ny, QUAD); mesh.SetCurvature(opt.order, false, DIM, Ordering::byNODES); for (int l = 0; l < opt.refine; l++) { mesh.UniformRefinement(); } const H1_FECollection fec(order, DIM); FiniteElementSpace fes(&mesh, &fec); Array ess_tdof_list; if (mesh.bdr_attributes.Size()) { Array ess_bdr(mesh.bdr_attributes.Max()); ess_bdr = 1; fes.GetEssentialTrueDofs(ess_bdr, ess_tdof_list); } GridFunction uold(&fes), u(&fes), b(&fes); FunctionCoefficient u0_fc(u0); u.ProjectCoefficient(u0_fc); socketstream glvis; if (opt.vis) { opt.vis = glvis.open(vishost, visport) == 0; } if (opt.vis) { Surface::Visualize(glvis, opt, &mesh, GLVIZ_W, GLVIZ_H, &u); } CGSolver cg; cg.SetRelTol(EPS); cg.SetAbsTol(EPS*EPS); cg.SetMaxIter(400); cg.SetPrintLevel(0); Vector B, X; OperatorPtr A; GridFunction eps(&fes); for (int i = 0; i < opt.niters; i++) { b = 0.0; uold = u; BilinearForm a(&fes); if (opt.pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); } const double q_uold = qf(order, AREA, mesh, fes, uold); MFEM_VERIFY(std::fabs(q_uold) > EPS,""); ConstantCoefficient q_uold_cc(1.0/sqrt(q_uold)); a.AddDomainIntegrator(new DiffusionIntegrator(q_uold_cc)); a.Assemble(); a.FormLinearSystem(ess_tdof_list, u, b, A, X, B); cg.SetOperator(*A); cg.Mult(B, X); a.RecoverFEMSolution(X, b, u); subtract(u, uold, eps); const double norm = sqrt(std::fabs(qf(order, NORM, mesh, fes, eps))); const double area = qf(order, AREA, mesh, fes, u); if (!opt.id) { mfem::out << "Iteration " << i << ", norm: " << norm << ", area: " << area << std::endl; } if (opt.vis) { Surface::Visualize(glvis, opt, &mesh, &u); } if (opt.print) { Surface::Print(opt, &mesh, &u); } if (norm < NRM) { break; } } return 0; } int main(int argc, char *argv[]) { Opt opt; opt.sz = opt.id = 0; // Parse command-line options. OptionsParser args(argc, argv); args.AddOption(&opt.pb, "-p", "--problem", "Problem to solve."); args.AddOption(&opt.mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&opt.wait, "-w", "--wait", "-no-w", "--no-wait", "Enable or disable a GLVis pause."); args.AddOption(&opt.radial, "-rad", "--radial", "-no-rad", "--no-radial", "Enable or disable radial constraints in solver."); args.AddOption(&opt.nx, "-x", "--num-elements-x", "Number of elements in x-direction."); args.AddOption(&opt.ny, "-y", "--num-elements-y", "Number of elements in y-direction."); args.AddOption(&opt.order, "-o", "--order", "Finite element order."); args.AddOption(&opt.refine, "-r", "--ref-levels", "Refinement"); args.AddOption(&opt.niters, "-n", "--niter-max", "Max number of iterations"); args.AddOption(&opt.surface, "-s", "--surface", "Choice of the surface."); args.AddOption(&opt.pa, "-pa", "--partial-assembly", "-no-pa", "--no-partial-assembly", "Enable Partial Assembly."); args.AddOption(&opt.tau, "-t", "--tau", "Costa scale factor."); args.AddOption(&opt.lambda, "-l", "--lambda", "Lambda step toward solution."); args.AddOption(&opt.amr, "-a", "--amr", "-no-a", "--no-amr", "Enable AMR."); args.AddOption(&opt.amr_threshold, "-at", "--amr-threshold", "AMR threshold."); args.AddOption(&opt.device_config, "-d", "--device", "Device configuration string, see Device::Configure()."); args.AddOption(&opt.keys, "-k", "--keys", "GLVis configuration keys."); args.AddOption(&opt.vis, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable visualization."); args.AddOption(&opt.vis_mesh, "-vm", "--vis-mesh", "-no-vm", "--no-vis-mesh", "Enable or disable mesh visualization."); args.AddOption(&opt.by_vdim, "-c", "--solve-byvdim", "-no-c", "--solve-bynodes", "Enable or disable the 'ByVdim' solver"); args.AddOption(&opt.print, "-print", "--print", "-no-print", "--no-print", "Enable or disable result output (files in mfem format)."); args.AddOption(&opt.snapshot, "-ss", "--snapshot", "-no-ss", "--no-snapshot", "Enable or disable GLVis snapshot."); args.Parse(); if (!args.Good()) { args.PrintUsage(mfem::out); return 1; } MFEM_VERIFY(opt.lambda >= 0.0 && opt.lambda <= 1.0,""); if (!opt.id) { args.PrintOptions(mfem::out); } // Initialize hardware devices Device device(opt.device_config); if (!opt.id) { device.Print(); } if (opt.pb == 0) { Problem0(opt); } if (opt.pb == 1) { Problem1(opt); } return 0; }