// Copyright (c) 2010-2023, Lawrence Livermore National Security, LLC. Produced // at the Lawrence Livermore National Laboratory. All Rights reserved. See files // LICENSE and NOTICE for details. LLNL-CODE-806117. // // This file is part of the MFEM library. For more information and source code // availability visit https://mfem.org. // // MFEM is free software; you can redistribute it and/or modify it under the // terms of the BSD-3 license. We welcome feedback and contributions, see file // CONTRIBUTING.md for details. // // Navier Kovasznay example // // Solve for the steady Kovasznay flow at Re = 40 defined by // // u = [1 - exp(L * x) * cos(2 * pi * y), // L / (2 * pi) * exp(L * x) * sin(2 * pi * y)], // // p = 1/2 * (1 - exp(2 * L * x)), // // with L = Re/2 - sqrt(Re^2/4 + 4 * pi^2). // // The problem domain is set up like this // // +-------------+ // | | // | | // | | // | | // Inflow -> | | -> Outflow // | | // | | // | | // | | // | | // +-------------+ // // and Dirichlet boundary conditions are applied for the velocity on every // boundary. The problem, although steady state, is time integrated up to the // final time and the solution is compared with the known exact solution. #include "navier_solver.hpp" #include using namespace mfem; using namespace navier; struct s_NavierContext { int ser_ref_levels = 1; int order = 6; double kinvis = 1.0 / 40.0; double t_final = 10 * 0.001; double dt = 0.001; double reference_pressure = 0.0; double reynolds = 1.0 / kinvis; double lam = 0.5 * reynolds - sqrt(0.25 * reynolds * reynolds + 4.0 * M_PI * M_PI); bool pa = true; bool ni = false; bool visualization = false; bool checkres = false; } ctx; void vel_kovasznay(const Vector &x, double t, Vector &u) { double xi = x(0); double yi = x(1); u(0) = 1.0 - exp(ctx.lam * xi) * cos(2.0 * M_PI * yi); u(1) = ctx.lam / (2.0 * M_PI) * exp(ctx.lam * xi) * sin(2.0 * M_PI * yi); } double pres_kovasznay(const Vector &x, double t) { double xi = x(0); return 0.5 * (1.0 - exp(2.0 * ctx.lam * xi)) + ctx.reference_pressure; } int main(int argc, char *argv[]) { Mpi::Init(argc, argv); Hypre::Init(); OptionsParser args(argc, argv); args.AddOption(&ctx.ser_ref_levels, "-rs", "--refine-serial", "Number of times to refine the mesh uniformly in serial."); args.AddOption(&ctx.order, "-o", "--order", "Order (degree) of the finite elements."); args.AddOption(&ctx.dt, "-dt", "--time-step", "Time step."); args.AddOption(&ctx.t_final, "-tf", "--final-time", "Final time."); args.AddOption(&ctx.pa, "-pa", "--enable-pa", "-no-pa", "--disable-pa", "Enable partial assembly."); args.AddOption(&ctx.ni, "-ni", "--enable-ni", "-no-ni", "--disable-ni", "Enable numerical integration rules."); args.AddOption(&ctx.visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption( &ctx.checkres, "-cr", "--checkresult", "-no-cr", "--no-checkresult", "Enable or disable checking of the result. Returns -1 on failure."); args.Parse(); if (!args.Good()) { if (Mpi::Root()) { args.PrintUsage(mfem::out); } return 1; } if (Mpi::Root()) { args.PrintOptions(mfem::out); } Mesh mesh = Mesh::MakeCartesian2D(2, 4, Element::QUADRILATERAL, false, 1.5, 2.0); mesh.EnsureNodes(); GridFunction *nodes = mesh.GetNodes(); *nodes -= 0.5; for (int i = 0; i < ctx.ser_ref_levels; ++i) { mesh.UniformRefinement(); } if (Mpi::Root()) { std::cout << "Number of elements: " << mesh.GetNE() << std::endl; } auto *pmesh = new ParMesh(MPI_COMM_WORLD, mesh); mesh.Clear(); // Create the flow solver. NavierSolver flowsolver(pmesh, ctx.order, ctx.kinvis); flowsolver.EnablePA(ctx.pa); flowsolver.EnableNI(ctx.ni); // Set the initial condition. ParGridFunction *u_ic = flowsolver.GetCurrentVelocity(); VectorFunctionCoefficient u_excoeff(pmesh->Dimension(), vel_kovasznay); u_ic->ProjectCoefficient(u_excoeff); FunctionCoefficient p_excoeff(pres_kovasznay); // Add Dirichlet boundary conditions to velocity space restricted to // selected attributes on the mesh. Array attr(pmesh->bdr_attributes.Max()); attr = 1; flowsolver.AddVelDirichletBC(vel_kovasznay, attr); double t = 0.0; double dt = ctx.dt; double t_final = ctx.t_final; bool last_step = false; flowsolver.Setup(dt); double err_u = 0.0; double err_p = 0.0; ParGridFunction *u_gf = nullptr; ParGridFunction *p_gf = nullptr; ParGridFunction p_ex_gf(flowsolver.GetCurrentPressure()->ParFESpace()); GridFunctionCoefficient p_ex_gf_coeff(&p_ex_gf); for (int step = 0; !last_step; ++step) { if (t + dt >= t_final - dt / 2) { last_step = true; } flowsolver.Step(t, dt, step); // Compare against exact solution of velocity and pressure. u_gf = flowsolver.GetCurrentVelocity(); p_gf = flowsolver.GetCurrentPressure(); u_excoeff.SetTime(t); p_excoeff.SetTime(t); // Remove mean value from exact pressure solution. p_ex_gf.ProjectCoefficient(p_excoeff); flowsolver.MeanZero(p_ex_gf); err_u = u_gf->ComputeL2Error(u_excoeff); err_p = p_gf->ComputeL2Error(p_ex_gf_coeff); double cfl = flowsolver.ComputeCFL(*u_gf, dt); if (Mpi::Root()) { printf("%5s %8s %8s %8s %11s %11s\n", "Order", "CFL", "Time", "dt", "err_u", "err_p"); printf("%5.2d %8.2E %.2E %.2E %.5E %.5E err\n", ctx.order, cfl, t, dt, err_u, err_p); fflush(stdout); } } if (ctx.visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock.precision(8); sol_sock << "parallel " << Mpi::WorldSize() << " " << Mpi::WorldRank() << "\n"; sol_sock << "solution\n" << *pmesh << *u_ic << std::flush; } flowsolver.PrintTimingData(); // Test if the result for the test run is as expected. if (ctx.checkres) { double tol_u = 1e-6; double tol_p = 1e-5; if (err_u > tol_u || err_p > tol_p) { if (Mpi::Root()) { mfem::out << "Result has a larger error than expected." << std::endl; } return -1; } } delete pmesh; return 0; }