// MFEM Example 1 - High-Performance Version // // Compile with: make ex1 // // Sample runs: ex1 -m ../../data/fichera.mesh -perf -mf -pc lor // ex1 -m ../../data/fichera.mesh -perf -asm -pc ho // ex1 -m ../../data/fichera.mesh -perf -asm -pc ho -sc // ex1 -m ../../data/fichera.mesh -std -asm -pc ho // ex1 -m ../../data/fichera.mesh -std -asm -pc ho -sc // ex1 -m ../../data/amr-hex.mesh -perf -asm -pc ho -sc // ex1 -m ../../data/amr-hex.mesh -std -asm -pc ho -sc // ex1 -m ../../data/ball-nurbs.mesh -perf -asm -pc ho -sc // ex1 -m ../../data/ball-nurbs.mesh -std -asm -pc ho -sc // ex1 -m ../../data/pipe-nurbs.mesh -perf -mf -pc lor // ex1 -m ../../data/pipe-nurbs.mesh -std -asm -pc ho -sc // ex1 -m ../../data/star.mesh -perf -mf -pc lor // ex1 -m ../../data/star.mesh -perf -asm -pc ho // ex1 -m ../../data/star.mesh -perf -asm -pc ho -sc // ex1 -m ../../data/star.mesh -std -asm -pc ho // ex1 -m ../../data/star.mesh -std -asm -pc ho -sc // ex1 -m ../../data/amr-quad.mesh -perf -asm -pc ho -sc // ex1 -m ../../data/amr-quad.mesh -std -asm -pc ho -sc // ex1 -m ../../data/disc-nurbs.mesh -perf -asm -pc ho -sc // ex1 -m ../../data/disc-nurbs.mesh -std -asm -pc ho -sc // // Description: This example code demonstrates the use of MFEM to define a // simple finite element discretization of the Laplace problem // -Delta u = 1 with homogeneous Dirichlet boundary conditions. // Specifically, we discretize using a FE space of the specified // order, or if order < 1 using an isoparametric/isogeometric // space (i.e. quadratic for quadratic curvilinear mesh, NURBS for // NURBS mesh, etc.) // // The example highlights the use of mesh refinement, finite // element grid functions, as well as linear and bilinear forms // corresponding to the left-hand side and right-hand side of the // discrete linear system. We also cover the explicit elimination // of essential boundary conditions, static condensation, and the // optional connection to the GLVis tool for visualization. #include "mfem-performance.hpp" #include #include using namespace std; using namespace mfem; enum class PCType { NONE, LOR, HO }; // Define template parameters for optimized build. template struct geom_t { }; template <> struct geom_t<2> { static const Geometry::Type value = Geometry::SQUARE; }; template <> struct geom_t<3> { static const Geometry::Type value = Geometry::CUBE; }; const int mesh_p = 3; // mesh curvature (default: 3) const int sol_p = 3; // solution order (default: 3) template struct ex1_t { static const Geometry::Type geom = geom_t::value; static const int rdim = Geometry::Constants::Dimension; static const int ir_order = 2*sol_p+rdim-1; // Static mesh type using mesh_fe_t = H1_FiniteElement; using mesh_fes_t = H1_FiniteElementSpace; using mesh_t = TMesh; // Static solution finite element space type using sol_fe_t = H1_FiniteElement; using sol_fes_t = H1_FiniteElementSpace; // Static quadrature, coefficient and integrator types using int_rule_t = TIntegrationRule; using coeff_t = TConstantCoefficient<>; using integ_t = TIntegrator; using HPCBilinearForm = TBilinearForm; static int run(Mesh *mesh, int ref_levels, int order, int basis, bool static_cond, PCType pc_choice, bool perf, bool matrix_free, bool visualization); }; int main(int argc, char *argv[]) { // 1. Parse command-line options. const char *mesh_file = "../../data/fichera.mesh"; int ref_levels = -1; int order = sol_p; const char *basis_type = "G"; // Gauss-Lobatto bool static_cond = false; const char *pc = "none"; bool perf = true; bool matrix_free = true; bool visualization = 1; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&ref_levels, "-r", "--refine", "Number of times to refine the mesh uniformly;" " -1 = auto: <= 50,000 elements."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree) or -1 for" " isoparametric space."); args.AddOption(&basis_type, "-b", "--basis-type", "Basis: G - Gauss-Lobatto, P - Positive, U - Uniform"); args.AddOption(&perf, "-perf", "--hpc-version", "-std", "--standard-version", "Enable high-performance, tensor-based, assembly/evaluation."); args.AddOption(&matrix_free, "-mf", "--matrix-free", "-asm", "--assembly", "Use matrix-free evaluation or efficient matrix assembly in " "the high-performance version."); args.AddOption(&pc, "-pc", "--preconditioner", "Preconditioner: lor - low-order-refined (matrix-free) GS, " "ho - high-order (assembled) GS, none."); args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc", "--no-static-condensation", "Enable static condensation."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.Parse(); if (!args.Good()) { args.PrintUsage(cout); return 1; } if (static_cond && perf && matrix_free) { cout << "\nStatic condensation can not be used with matrix-free" " evaluation!\n" << endl; return 2; } MFEM_VERIFY(perf || !matrix_free, "--standard-version is not compatible with --matrix-free"); args.PrintOptions(cout); PCType pc_choice; if (!strcmp(pc, "ho")) { pc_choice = PCType::HO; } else if (!strcmp(pc, "lor")) { pc_choice = PCType::LOR; } else if (!strcmp(pc, "none")) { pc_choice = PCType::NONE; } else { mfem_error("Invalid Preconditioner specified"); return 3; } cout << "\nMFEM SIMD width: " << MFEM_SIMD_BYTES/sizeof(double) << " doubles\n" << endl; // See class BasisType in fem/fe_coll.hpp for available basis types int basis = BasisType::GetType(basis_type[0]); cout << "Using " << BasisType::Name(basis) << " basis ..." << endl; // 2. Read the mesh from the given mesh file. We can handle triangular, // quadrilateral, tetrahedral, hexahedral, surface and volume meshes with // the same code. Mesh *mesh = new Mesh(mesh_file, 1, 1); int dim = mesh->Dimension(); if (dim == 2) { return ex1_t<2>::run(mesh, ref_levels, order, basis, static_cond, pc_choice, perf, matrix_free, visualization); } else if (dim == 3) { return ex1_t<3>::run(mesh, ref_levels, order, basis, static_cond, pc_choice, perf, matrix_free, visualization); } else { MFEM_ABORT("Dimension must be 2 or 3.") } return 0; } template int ex1_t::run(Mesh *mesh, int ref_levels, int order, int basis, bool static_cond, PCType pc_choice, bool perf, bool matrix_free, bool visualization) { // 3. Check if the optimized version matches the given mesh if (perf) { cout << "High-performance version using integration rule with " << int_rule_t::qpts << " points ..." << endl; if (!mesh_t::MatchesGeometry(*mesh)) { cout << "The given mesh does not match the optimized 'geom' parameter.\n" << "Recompile with suitable 'geom' value." << endl; delete mesh; return 4; } else if (!mesh_t::MatchesNodes(*mesh)) { cout << "Switching the mesh curvature to match the " << "optimized value (order " << mesh_p << ") ..." << endl; mesh->SetCurvature(mesh_p, false, -1, Ordering::byNODES); } } // 4. Refine the mesh to increase the resolution. In this example we do // 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the // largest number that gives a final mesh with no more than 50,000 // elements, or as specified on the command line with the option // '--refine'. { ref_levels = (ref_levels != -1) ? ref_levels : (int)floor(log(50000./mesh->GetNE())/log(2.)/dim); for (int l = 0; l < ref_levels; l++) { mesh->UniformRefinement(); } } if (mesh->MeshGenerator() & 1) // simplex mesh { MFEM_VERIFY(pc_choice != PCType::LOR, "triangle and tet meshes do not " " support the LOR preconditioner yet"); } // 5. Define a finite element space on the mesh. Here we use continuous // Lagrange finite elements of the specified order. If order < 1, we // instead use an isoparametric/isogeometric space. FiniteElementCollection *fec; if (order > 0) { fec = new H1_FECollection(order, dim, basis); } else if (mesh->GetNodes()) { fec = mesh->GetNodes()->OwnFEC(); cout << "Using isoparametric FEs: " << fec->Name() << endl; } else { fec = new H1_FECollection(order = 1, dim, basis); } FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec); cout << "Number of finite element unknowns: " << fespace->GetTrueVSize() << endl; // Create the LOR mesh and finite element space. In the settings of this // example, we can transfer between HO and LOR with the identity operator. Mesh mesh_lor; FiniteElementCollection *fec_lor = NULL; FiniteElementSpace *fespace_lor = NULL; if (pc_choice == PCType::LOR) { int basis_lor = basis; if (basis == BasisType::Positive) { basis_lor=BasisType::ClosedUniform; } mesh_lor = Mesh::MakeRefined(*mesh, order, basis_lor); fec_lor = new H1_FECollection(1, dim); fespace_lor = new FiniteElementSpace(&mesh_lor, fec_lor); } // 6. Check if the optimized version matches the given space if (perf && !sol_fes_t::Matches(*fespace)) { cout << "The given order does not match the optimized parameter.\n" << "Recompile with suitable 'sol_p' value." << endl; delete fespace; delete fec; delete mesh; return 5; } // 7. Determine the list of true (i.e. conforming) essential boundary dofs. // In this example, the boundary conditions are defined by marking all // the boundary attributes from the mesh as essential (Dirichlet) and // converting them to a list of true dofs. Array ess_tdof_list; if (mesh->bdr_attributes.Size()) { Array ess_bdr(mesh->bdr_attributes.Max()); ess_bdr = 1; fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list); } // 8. Set up the linear form b(.) which corresponds to the right-hand side of // the FEM linear system, which in this case is (1,phi_i) where phi_i are // the basis functions in the finite element fespace. LinearForm *b = new LinearForm(fespace); ConstantCoefficient one(1.0); b->AddDomainIntegrator(new DomainLFIntegrator(one)); b->Assemble(); // 9. Define the solution vector x as a finite element grid function // corresponding to fespace. Initialize x with initial guess of zero, // which satisfies the boundary conditions. GridFunction x(fespace); x = 0.0; // 10. Set up the bilinear form a(.,.) on the finite element space that will // hold the matrix corresponding to the Laplacian operator -Delta. // Optionally setup a form to be assembled for preconditioning (a_pc). BilinearForm *a = new BilinearForm(fespace); BilinearForm *a_pc = NULL; if (pc_choice == PCType::LOR) { a_pc = new BilinearForm(fespace_lor); } if (pc_choice == PCType::HO) { a_pc = new BilinearForm(fespace); } // 11. Assemble the bilinear form and the corresponding linear system, // applying any necessary transformations such as: eliminating boundary // conditions, applying conforming constraints for non-conforming AMR, // static condensation, etc. if (static_cond) { a->EnableStaticCondensation(); MFEM_VERIFY(pc_choice != PCType::LOR, "cannot use LOR preconditioner with static condensation"); } cout << "Assembling the bilinear form ..." << flush; tic_toc.Clear(); tic_toc.Start(); // Pre-allocate sparsity assuming dense element matrices a->UsePrecomputedSparsity(); HPCBilinearForm *a_hpc = NULL; Operator *a_oper = NULL; if (!perf) { // Standard assembly using a diffusion domain integrator a->AddDomainIntegrator(new DiffusionIntegrator(one)); a->Assemble(); } else { // High-performance assembly/evaluation using the templated operator type a_hpc = new HPCBilinearForm(integ_t(coeff_t(1.0)), *fespace); if (matrix_free) { a_hpc->Assemble(); // partial assembly } else { a_hpc->AssembleBilinearForm(*a); // full matrix assembly } } tic_toc.Stop(); cout << " done, " << tic_toc.RealTime() << "s." << endl; // 12. Solve the system A X = B with CG. In the standard case, use a simple // symmetric Gauss-Seidel preconditioner. // Setup the operator matrix (if applicable) SparseMatrix A; Vector B, X; if (perf && matrix_free) { a_hpc->FormLinearSystem(ess_tdof_list, x, *b, a_oper, X, B); cout << "Size of linear system: " << a_hpc->Height() << endl; } else { a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B); cout << "Size of linear system: " << A.Height() << endl; a_oper = &A; } // Setup the matrix used for preconditioning cout << "Assembling the preconditioning matrix ..." << flush; tic_toc.Clear(); tic_toc.Start(); SparseMatrix A_pc; if (pc_choice == PCType::LOR) { // TODO: assemble the LOR matrix using the performance code a_pc->AddDomainIntegrator(new DiffusionIntegrator(one)); a_pc->UsePrecomputedSparsity(); a_pc->Assemble(); a_pc->FormSystemMatrix(ess_tdof_list, A_pc); } else if (pc_choice == PCType::HO) { if (!matrix_free) { A_pc.MakeRef(A); // matrix already assembled, reuse it } else { a_pc->UsePrecomputedSparsity(); a_hpc->AssembleBilinearForm(*a_pc); a_pc->FormSystemMatrix(ess_tdof_list, A_pc); } } tic_toc.Stop(); cout << " done, " << tic_toc.RealTime() << "s." << endl; // Solve with CG or PCG, depending if the matrix A_pc is available if (pc_choice != PCType::NONE) { GSSmoother M(A_pc); PCG(*a_oper, M, B, X, 1, 500, 1e-12, 0.0); } else { CG(*a_oper, B, X, 1, 500, 1e-12, 0.0); } // 13. Recover the solution as a finite element grid function. if (perf && matrix_free) { a_hpc->RecoverFEMSolution(X, *b, x); } else { a->RecoverFEMSolution(X, *b, x); } // 14. Save the refined mesh and the solution. This output can be viewed later // using GLVis: "glvis -m refined.mesh -g sol.gf". ofstream mesh_ofs("refined.mesh"); mesh_ofs.precision(8); mesh->Print(mesh_ofs); ofstream sol_ofs("sol.gf"); sol_ofs.precision(8); x.Save(sol_ofs); // 15. Send the solution by socket to a GLVis server. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock.precision(8); sol_sock << "solution\n" << *mesh << x << flush; } // 16. Free the used memory. delete a; delete a_hpc; if (a_oper != &A) { delete a_oper; } delete a_pc; delete b; delete fespace; delete fespace_lor; delete fec_lor; if (order > 0) { delete fec; } delete mesh; return 0; }