// Copyright (c) 2010-2023, Lawrence Livermore National Security, LLC. Produced // at the Lawrence Livermore National Laboratory. All Rights reserved. See files // LICENSE and NOTICE for details. LLNL-CODE-806117. // // This file is part of the MFEM library. For more information and source code // availability visit https://mfem.org. // // MFEM is free software; you can redistribute it and/or modify it under the // terms of the BSD-3 license. We welcome feedback and contributions, see file // CONTRIBUTING.md for details. #include "mfem.hpp" #include "catch.hpp" #include #include using namespace mfem; /** * Utility function to generate IntegerationPoints, based on param ip * that are outside the unit interval. Results are placed in output * parameter arr. * * Note: this is defined in test_calcshape.cpp */ void GetRelatedIntegrationPoints(const IntegrationPoint& ip, int dim, Array& arr); /** * Utility function to setup IsoparametricTransformations for reference * elements of various types. * * Note: this is defined in test_calcvshape.cpp */ void GetReferenceTransformation(const Element::Type ElemType, IsoparametricTransformation & T); /** * Linear test function whose curl is equal to 1 in 2D and (1,1,1) in 3D. */ void test_curl_func(const Vector &x, Vector &v) { int dim = x.Size(); v.SetSize(dim); v[0] = 4.0 * x[1]; v[1] = 5.0 * x[0]; if (dim == 3) { v[0] += 3.0 * x[2]; v[1] += x[2]; v[2] = 2.0 * (x[0] + x[1]); } } /** * Tests fe->CalcCurlShape() over a grid of IntegrationPoints * of resolution res. Also tests at integration points * that are outside the element. */ void TestCalcCurlShape(FiniteElement* fe, ElementTransformation * T, int res) { int dof = fe->GetDof(); int dim = fe->GetDim(); int cdim = 2 * dim - 3; Vector dofs(dof); Vector v(cdim); DenseMatrix weights( dof, cdim ); VectorFunctionCoefficient vCoef(dim, test_curl_func); fe->Project(vCoef, *T, dofs); // Get a uniform grid of integration points RefinedGeometry* ref = GlobGeometryRefiner.Refine( fe->GetGeomType(), res); const IntegrationRule& intRule = ref->RefPts; int npoints = intRule.GetNPoints(); for (int i=0; i < npoints; ++i) { // Get the current integration point from intRule IntegrationPoint pt = intRule.IntPoint(i); // Get several variants of this integration point // some of which are inside the element and some are outside Array ipArr; GetRelatedIntegrationPoints( pt, dim, ipArr ); // For each such integration point check that the weights // from CalcCurlShape() sum to one for (int j=0; j < ipArr.Size(); ++j) { IntegrationPoint& ip = ipArr[j]; fe->CalcCurlShape(ip, weights); weights.MultTranspose(dofs, v); REQUIRE( v[0] == Approx(1.) ); if (dim == 3) { REQUIRE( v[1] == Approx(1.) ); REQUIRE( v[2] == Approx(1.) ); } } } } TEST_CASE("CalcCurlShape ND", "[ND_TriangleElement]" "[ND_QuadrilateralElement]" "[ND_TetrahedronElement]" "[ND_WedgeElement]" "[ND_HexahedronElement]") { const int maxOrder = 5; const int resolution = 10; auto order = GENERATE_COPY(range(1, maxOrder + 1)); CAPTURE(order); SECTION("ND_TriangleElement") { IsoparametricTransformation T; GetReferenceTransformation(Element::TRIANGLE, T); ND_TriangleElement fe(order); TestCalcCurlShape(&fe, &T, resolution); } SECTION("ND_QuadrilateralElement") { IsoparametricTransformation T; GetReferenceTransformation(Element::QUADRILATERAL, T); ND_QuadrilateralElement fe(order); TestCalcCurlShape(&fe, &T, resolution); } SECTION("ND_TetrahedronElement") { IsoparametricTransformation T; GetReferenceTransformation(Element::TETRAHEDRON, T); ND_TetrahedronElement fe(order); TestCalcCurlShape(&fe, &T, resolution); } SECTION("ND_WedgeElement") { IsoparametricTransformation T; GetReferenceTransformation(Element::WEDGE, T); ND_WedgeElement fe(order); TestCalcCurlShape(&fe, &T, resolution); } SECTION("ND_HexahedronElement") { IsoparametricTransformation T; GetReferenceTransformation(Element::HEXAHEDRON, T); ND_HexahedronElement fe(order); TestCalcCurlShape(&fe, &T, resolution); } }