// Copyright (c) 2010-2023, Lawrence Livermore National Security, LLC. Produced // at the Lawrence Livermore National Laboratory. All Rights reserved. See files // LICENSE and NOTICE for details. LLNL-CODE-806117. // // This file is part of the MFEM library. For more information and source code // availability visit https://mfem.org. // // MFEM is free software; you can redistribute it and/or modify it under the // terms of the BSD-3 license. We welcome feedback and contributions, see file // CONTRIBUTING.md for details. #include "mfem.hpp" #include "unit_tests.hpp" using namespace mfem; TEST_CASE("OperatorChebyshevSmoother", "[Chebyshev symmetry]") { for (int order = 2; order < 5; ++order) { const int cheb_order = 2; Mesh mesh = Mesh::MakeCartesian3D(4, 4, 4, Element::HEXAHEDRON); FiniteElementCollection *fec = new H1_FECollection(order, 3); FiniteElementSpace fespace(&mesh, fec); Array ess_bdr(mesh.bdr_attributes.Max()); ess_bdr = 1; Array ess_tdof_list; fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list); BilinearForm aform(&fespace); aform.SetAssemblyLevel(AssemblyLevel::PARTIAL); aform.AddDomainIntegrator(new DiffusionIntegrator); aform.Assemble(); OperatorPtr opr; opr.SetType(Operator::ANY_TYPE); aform.FormSystemMatrix(ess_tdof_list, opr); Vector diag(fespace.GetTrueVSize()); aform.AssembleDiagonal(diag); Solver* smoother = new OperatorChebyshevSmoother(*opr, diag, ess_tdof_list, cheb_order); int n = smoother->Width(); Vector left(n); Vector right(n); int seed = (int) time(0); left.Randomize(seed); right.Randomize(seed + 2); // test that x^T S y = y^T S x Vector smooth(n); smooth = 0.0; smoother->Mult(right, smooth); double forward_val = left * smooth; smoother->Mult(left, smooth); double transpose_val = right * smooth; double error = fabs(forward_val - transpose_val) / fabs(forward_val); CAPTURE(order, error); REQUIRE(error < 1.e-13); delete smoother; delete fec; } }