# microgemm
[![github]](https://github.com/cospectrum/microgemm)
[![latest_version]][crates.io]
[![docs.rs]](https://docs.rs/microgemm)
[![dependency status](https://deps.rs/repo/github/cospectrum/microgemm/status.svg)](https://deps.rs/repo/github/cospectrum/microgemm)
[github]: https://img.shields.io/badge/github-cospectrum/microgemm-8da0cb?logo=github
[latest_version]: https://img.shields.io/crates/v/microgemm.svg?logo=rust
[crates.io]: https://crates.io/crates/microgemm
[docs.rs]: https://img.shields.io/badge/docs.rs-microgemm-66c2a5?logo=docs.rs
General matrix multiplication with custom configuration in Rust.
Supports `no_std` and `no_alloc` environments.
The implementation is based on the [BLIS](https://github.com/flame/blis) microkernel approach.
## Content
- [Install](#install)
- [Usage](#usage)
- [gemm](#gemm)
- [Implemented Kernels](#implemented-kernels)
- [Custom Kernel Implementation](#custom-kernel-implementation)
- [Benchmarks](#benchmarks)
- [f32](#f32)
- [License](#license)
## Install
```sh
cargo add microgemm
```
## Usage
The `Kernel` trait is the main abstraction of `microgemm`.
You can implement it yourself or use kernels that are already provided out of the box.
### gemm
```rust
use microgemm::{kernels::GenericKernel8x8, Kernel as _, MatMut, MatRef, PackSizes};
fn main() {
let kernel = GenericKernel8x8::::new();
assert_eq!(kernel.mr(), 8);
assert_eq!(kernel.nr(), 8);
let pack_sizes = PackSizes {
mc: 5 * kernel.mr(), // MC must be divisible by MR
kc: 190,
nc: 9 * kernel.nr(), // NC must be divisible by NR
};
let mut packing_buf = vec![0.0; pack_sizes.buf_len()];
let (alpha, beta) = (2.0, -3.0);
let (m, k, n) = (100, 380, 250);
let a = vec![2.0; m * k];
let b = vec![3.0; k * n];
let mut c = vec![4.0; m * n];
let a = MatRef::row_major(m, k, &a);
let b = MatRef::row_major(k, n, &b);
let mut c = MatMut::row_major(m, n, &mut c);
// c <- alpha a b + beta c
kernel.gemm(alpha, a, b, beta, &mut c, pack_sizes, &mut packing_buf);
println!("{:?}", c.as_slice());
}
```
Also see [no_alloc](./examples/no_alloc.rs) example for use without `Vec`.
### Implemented Kernels
| Name | Scalar Types | Target |
| ---- | ------------ | ------ |
| GenericKernelNxN
(N: 2, 4, 8, 16, 32) | T: Copy + Zero + One + Mul + Add | Any |
| NeonKernel4x4 | f32 | aarch64 and target feature neon |
| NeonKernel8x8 | f32 | aarch64 and target feature neon |
### Custom Kernel Implementation
```rust
use microgemm::{typenum::U4, Kernel, MatMut, MatRef};
struct CustomKernel;
impl Kernel for CustomKernel {
type Scalar = f64;
type Mr = U4;
type Nr = U4;
// dst <- alpha lhs rhs + beta dst
fn microkernel(
&self,
alpha: f64,
lhs: MatRef,
rhs: MatRef,
beta: f64,
dst: &mut MatMut,
) {
// lhs is col-major
assert_eq!(lhs.row_stride(), 1);
assert_eq!(lhs.nrows(), Self::MR);
// rhs is row-major
assert_eq!(rhs.col_stride(), 1);
assert_eq!(rhs.ncols(), Self::NR);
// dst is col-major
assert_eq!(dst.row_stride(), 1);
assert_eq!(dst.nrows(), Self::MR);
assert_eq!(dst.ncols(), Self::NR);
// your microkernel implementation...
}
}
```
## Benchmarks
All benchmarks are performed in a `single thread` on square matrices of dimension `n`.
### f32
`PackSizes { mc: n, kc: n, nc: n }`
#### aarch64 (M1)
```
n NeonKernel8x8 faer matrixmultiply
128 75.5µs 242.6µs 46.2µs
256 466.3µs 3.2ms 518.2µs
512 3ms 15.9ms 2.7ms
1024 23.9ms 128.4ms 22ms
2048 191ms 1s 182.8ms
```
## License
Licensed under either of [Apache License, Version 2.0](./LICENSE-APACHE)
or [MIT license](./LICENSE-MIT) at your option.