# mih-rs ![](https://github.com/kampersanda/mih-rs/actions/workflows/rust.yml/badge.svg) [![Documentation](https://docs.rs/mih-rs/badge.svg)](https://docs.rs/mih-rs) [![Crates.io](https://img.shields.io/crates/v/mih-rs.svg)](https://crates.io/crates/mih-rs) [![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/kampersanda/mih-rs/blob/master/LICENSE) Rust implementation of multi-index hashing (MIH) for neighbor searches on binary codes in the Hamming space, described in the paper > Norouzi, Punjani, and Fleet, [Fast exact search in Hamming space with multi-index hashing](https://arxiv.org/abs/1307.2982), *IEEE TPAMI*, 36(6):1107– 1119, 2014. As the [benchmark result](https://github.com/kampersanda/mih-rs#benchmark) shows, on 10 million 64-bit codes, `mih-rs` can perform top-k searches 19−94 times faster than linear search when k = 1..100. ## Features - **Two types of neighbor searches:** `mih-rs` provides the two search operations: - *Range search* finds neighbor codes whose Hamming distances to a given code are within a radius. - *Top-K search* finds the top-K codes that are closest to a given code. - **Fast and memory-efficient implementation:** The data structure is built on sparse hash tables, following the [original implementation](https://github.com/norouzi/mih). - **Parameter free:** `mih-rs` automatically sets an optimal parameter of MIH depending on a given database (although you can also set this manually). - **Serialization:** `mih-rs` supports to serialize/deserialize the index. ## Example ```rust use mih_rs::Index; // Database of codes let codes: Vec = vec![ 0b1111111111111111111111011111111111111111111111111011101111111111, // #zeros = 3 0b1111111111111111111111111111111101111111111011111111111111111111, // #zeros = 2 0b1111111011011101111111111111111101111111111111111111111111111111, // #zeros = 4 0b1111111111111101111111111111111111111000111111111110001111111110, // #zeros = 8 0b1101111111111111111111111111111111111111111111111111111111111111, // #zeros = 1 0b1111111111111111101111111011111111111111111101001110111111111111, // #zeros = 6 0b1111111111111111111111111111111111101111111111111111011111111111, // #zeros = 2 0b1110110101011011011111111111111101111111111111111000011111111111, // #zeros = 11 ]; // Query code let qcode: u64 = 0b1111111111111111111111111111111111111111111111111111111111111111; // #zeros = 0 // Construct the index let index = Index::new(codes).unwrap(); // Find the ids of neighbor codes whose Hamming distances are within 2 let mut searcher = index.range_searcher(); let answers = searcher.run(qcode, 2); assert_eq!(answers, vec![1, 4, 6]); // Find the ids of the top-4 nearest neighbor codes let mut searcher = index.topk_searcher(); let answers = searcher.run(qcode, 4); assert_eq!(answers, vec![4, 1, 6, 0]); // Serialization/Deserialization let mut data = vec![]; index.serialize_into(&mut data).unwrap(); let other = Index::::deserialize_from(&data[..]).unwrap(); assert_eq!(index, other); ``` ## Binary code types `mih_rs::Index` can be built from a vector of type `mih_rs::CodeInt` that is a primitive integer trait supporting a popcount operation. Currently, this library defines `mih_rs::CodeInt` for `u8`, `u16`, `u32`, and `u64`. ## Benchmark `timeperf_topk.rs` offers the benchmark of top-K search for MIH and LinearSearch algorithms on binary code types `u32` and `u64`. The following table shows the result of average search times in milliseconds per query, in the settings: - **Database**: N random codes from a uniform distribution. - **Query set**: 100 random codes from a uniform distribution. - **Machine**: MacBook Pro (2019) of Quad-Core Intel Core i5 @2.4 GHz with 16 GB of RAM. - **Library version**: v0.2.0 ### Result for `u32` | Algorithm | N=10,000 | N=100,000 | N=1,000,000 | N=10,000,000 | | ------------ | -------: | --------: | ----------: | -----------: | | MIH (K=1) | 0.01 | 0.02 | 0.07 | 0.38 | | MIH (K=10) | 0.04 | 0.08 | 0.30 | 1.06 | | MIH (K=100) | 0.13 | 0.22 | 1.22 | 4.35 | | LinearSearch | 0.36 | 4.40 | 50.96 | 626.87 | ### Result for `u64` | Algorithm | N=10,000 | N=100,000 | N=1,000,000 | N=10,000,000 | | ------------ | -------: | --------: | ----------: | -----------: | | MIH (K=1) | 0.10 | 0.36 | 1.46 | 6.7 | | MIH (K=10) | 0.20 | 0.76 | 3.72 | 14.8 | | MIH (K=100) | 0.41 | 1.53 | 7.02 | 33.2 | | LinearSearch | 0.36 | 4.36 | 52.28 | 629.1 | ## Licensing This library is free software provided under MIT.