// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // SPDX-License-Identifier: BSD-3-Clause // Google Mock - a framework for writing C++ mock classes. // // This is the main header file a user should include. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ // This file implements the following syntax: // // ON_CALL(mock_object, Method(...)) // .With(...) ? // .WillByDefault(...); // // where With() is optional and WillByDefault() must appear exactly // once. // // EXPECT_CALL(mock_object, Method(...)) // .With(...) ? // .Times(...) ? // .InSequence(...) * // .WillOnce(...) * // .WillRepeatedly(...) ? // .RetiresOnSaturation() ? ; // // where all clauses are optional and WillOnce() can be repeated. // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // The ACTION* family of macros can be used in a namespace scope to // define custom actions easily. The syntax: // // ACTION(name) { statements; } // // will define an action with the given name that executes the // statements. The value returned by the statements will be used as // the return value of the action. Inside the statements, you can // refer to the K-th (0-based) argument of the mock function by // 'argK', and refer to its type by 'argK_type'. For example: // // ACTION(IncrementArg1) { // arg1_type temp = arg1; // return ++(*temp); // } // // allows you to write // // ...WillOnce(IncrementArg1()); // // You can also refer to the entire argument tuple and its type by // 'args' and 'args_type', and refer to the mock function type and its // return type by 'function_type' and 'return_type'. // // Note that you don't need to specify the types of the mock function // arguments. However rest assured that your code is still type-safe: // you'll get a compiler error if *arg1 doesn't support the ++ // operator, or if the type of ++(*arg1) isn't compatible with the // mock function's return type, for example. // // Sometimes you'll want to parameterize the action. For that you can use // another macro: // // ACTION_P(name, param_name) { statements; } // // For example: // // ACTION_P(Add, n) { return arg0 + n; } // // will allow you to write: // // ...WillOnce(Add(5)); // // Note that you don't need to provide the type of the parameter // either. If you need to reference the type of a parameter named // 'foo', you can write 'foo_type'. For example, in the body of // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type // of 'n'. // // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support // multi-parameter actions. // // For the purpose of typing, you can view // // ACTION_Pk(Foo, p1, ..., pk) { ... } // // as shorthand for // // template // FooActionPk Foo(p1_type p1, ..., pk_type pk) { ... } // // In particular, you can provide the template type arguments // explicitly when invoking Foo(), as in Foo(5, false); // although usually you can rely on the compiler to infer the types // for you automatically. You can assign the result of expression // Foo(p1, ..., pk) to a variable of type FooActionPk. This can be useful when composing actions. // // You can also overload actions with different numbers of parameters: // // ACTION_P(Plus, a) { ... } // ACTION_P2(Plus, a, b) { ... } // // While it's tempting to always use the ACTION* macros when defining // a new action, you should also consider implementing ActionInterface // or using MakePolymorphicAction() instead, especially if you need to // use the action a lot. While these approaches require more work, // they give you more control on the types of the mock function // arguments and the action parameters, which in general leads to // better compiler error messages that pay off in the long run. They // also allow overloading actions based on parameter types (as opposed // to just based on the number of parameters). // // CAVEAT: // // ACTION*() can only be used in a namespace scope as templates cannot be // declared inside of a local class. // Users can, however, define any local functors (e.g. a lambda) that // can be used as actions. // // MORE INFORMATION: // // To learn more about using these macros, please search for 'ACTION' on // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #ifndef _WIN32_WCE # include #endif #include #include #include #include #include #include #include // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file defines some utilities useful for implementing Google // Mock. They are subject to change without notice, so please DO NOT // USE THEM IN USER CODE. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #include #include // NOLINT #include #include // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Low-level types and utilities for porting Google Mock to various // platforms. All macros ending with _ and symbols defined in an // internal namespace are subject to change without notice. Code // outside Google Mock MUST NOT USE THEM DIRECTLY. Macros that don't // end with _ are part of Google Mock's public API and can be used by // code outside Google Mock. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ #include #include #include #include // Most of the utilities needed for porting Google Mock are also // required for Google Test and are defined in gtest-port.h. // // Note to maintainers: to reduce code duplication, prefer adding // portability utilities to Google Test's gtest-port.h instead of // here, as Google Mock depends on Google Test. Only add a utility // here if it's truly specific to Google Mock. #include "gtest/gtest.h" // Copyright 2015, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Injection point for custom user configurations. See README for details // // ** Custom implementation starts here ** // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ // For MS Visual C++, check the compiler version. At least VS 2015 is // required to compile Google Mock. #if defined(_MSC_VER) && _MSC_VER < 1900 # error "At least Visual C++ 2015 (14.0) is required to compile Google Mock." #endif // Macro for referencing flags. This is public as we want the user to // use this syntax to reference Google Mock flags. #define GMOCK_FLAG(name) FLAGS_gmock_##name #if !defined(GMOCK_DECLARE_bool_) // Macros for declaring flags. # define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name) # define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name) # define GMOCK_DECLARE_string_(name) \ extern GTEST_API_ ::std::string GMOCK_FLAG(name) // Macros for defining flags. # define GMOCK_DEFINE_bool_(name, default_val, doc) \ GTEST_API_ bool GMOCK_FLAG(name) = (default_val) # define GMOCK_DEFINE_int32_(name, default_val, doc) \ GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val) # define GMOCK_DEFINE_string_(name, default_val, doc) \ GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val) #endif // !defined(GMOCK_DECLARE_bool_) #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ namespace testing { template class Matcher; namespace internal { // Silence MSVC C4100 (unreferenced formal parameter) and // C4805('==': unsafe mix of type 'const int' and type 'const bool') #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) # pragma warning(disable:4805) #endif // Joins a vector of strings as if they are fields of a tuple; returns // the joined string. GTEST_API_ std::string JoinAsTuple(const Strings& fields); // Converts an identifier name to a space-separated list of lower-case // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is // treated as one word. For example, both "FooBar123" and // "foo_bar_123" are converted to "foo bar 123". GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name); // GetRawPointer(p) returns the raw pointer underlying p when p is a // smart pointer, or returns p itself when p is already a raw pointer. // The following default implementation is for the smart pointer case. template inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) { return p.get(); } // This overloaded version is for the raw pointer case. template inline Element* GetRawPointer(Element* p) { return p; } // MSVC treats wchar_t as a native type usually, but treats it as the // same as unsigned short when the compiler option /Zc:wchar_t- is // specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t // is a native type. #if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED) // wchar_t is a typedef. #else # define GMOCK_WCHAR_T_IS_NATIVE_ 1 #endif // In what follows, we use the term "kind" to indicate whether a type // is bool, an integer type (excluding bool), a floating-point type, // or none of them. This categorization is useful for determining // when a matcher argument type can be safely converted to another // type in the implementation of SafeMatcherCast. enum TypeKind { kBool, kInteger, kFloatingPoint, kOther }; // KindOf::value is the kind of type T. template struct KindOf { enum { value = kOther }; // The default kind. }; // This macro declares that the kind of 'type' is 'kind'. #define GMOCK_DECLARE_KIND_(type, kind) \ template <> struct KindOf { enum { value = kind }; } GMOCK_DECLARE_KIND_(bool, kBool); // All standard integer types. GMOCK_DECLARE_KIND_(char, kInteger); GMOCK_DECLARE_KIND_(signed char, kInteger); GMOCK_DECLARE_KIND_(unsigned char, kInteger); GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT GMOCK_DECLARE_KIND_(int, kInteger); GMOCK_DECLARE_KIND_(unsigned int, kInteger); GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT GMOCK_DECLARE_KIND_(long long, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned long long, kInteger); // NOLINT #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DECLARE_KIND_(wchar_t, kInteger); #endif // All standard floating-point types. GMOCK_DECLARE_KIND_(float, kFloatingPoint); GMOCK_DECLARE_KIND_(double, kFloatingPoint); GMOCK_DECLARE_KIND_(long double, kFloatingPoint); #undef GMOCK_DECLARE_KIND_ // Evaluates to the kind of 'type'. #define GMOCK_KIND_OF_(type) \ static_cast< ::testing::internal::TypeKind>( \ ::testing::internal::KindOf::value) // LosslessArithmeticConvertibleImpl::value // is true if and only if arithmetic type From can be losslessly converted to // arithmetic type To. // // It's the user's responsibility to ensure that both From and To are // raw (i.e. has no CV modifier, is not a pointer, and is not a // reference) built-in arithmetic types, kFromKind is the kind of // From, and kToKind is the kind of To; the value is // implementation-defined when the above pre-condition is violated. template using LosslessArithmeticConvertibleImpl = std::integral_constant< bool, // clang-format off // Converting from bool is always lossless (kFromKind == kBool) ? true // Converting between any other type kinds will be lossy if the type // kinds are not the same. : (kFromKind != kToKind) ? false : (kFromKind == kInteger && // Converting between integers of different widths is allowed so long // as the conversion does not go from signed to unsigned. (((sizeof(From) < sizeof(To)) && !(std::is_signed::value && !std::is_signed::value)) || // Converting between integers of the same width only requires the // two types to have the same signedness. ((sizeof(From) == sizeof(To)) && (std::is_signed::value == std::is_signed::value))) ) ? true // Floating point conversions are lossless if and only if `To` is at least // as wide as `From`. : (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true : false // clang-format on >; // LosslessArithmeticConvertible::value is true if and only if // arithmetic type From can be losslessly converted to arithmetic type To. // // It's the user's responsibility to ensure that both From and To are // raw (i.e. has no CV modifier, is not a pointer, and is not a // reference) built-in arithmetic types; the value is // implementation-defined when the above pre-condition is violated. template using LosslessArithmeticConvertible = LosslessArithmeticConvertibleImpl; // This interface knows how to report a Google Mock failure (either // non-fatal or fatal). class FailureReporterInterface { public: // The type of a failure (either non-fatal or fatal). enum FailureType { kNonfatal, kFatal }; virtual ~FailureReporterInterface() {} // Reports a failure that occurred at the given source file location. virtual void ReportFailure(FailureType type, const char* file, int line, const std::string& message) = 0; }; // Returns the failure reporter used by Google Mock. GTEST_API_ FailureReporterInterface* GetFailureReporter(); // Asserts that condition is true; aborts the process with the given // message if condition is false. We cannot use LOG(FATAL) or CHECK() // as Google Mock might be used to mock the log sink itself. We // inline this function to prevent it from showing up in the stack // trace. inline void Assert(bool condition, const char* file, int line, const std::string& msg) { if (!condition) { GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal, file, line, msg); } } inline void Assert(bool condition, const char* file, int line) { Assert(condition, file, line, "Assertion failed."); } // Verifies that condition is true; generates a non-fatal failure if // condition is false. inline void Expect(bool condition, const char* file, int line, const std::string& msg) { if (!condition) { GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal, file, line, msg); } } inline void Expect(bool condition, const char* file, int line) { Expect(condition, file, line, "Expectation failed."); } // Severity level of a log. enum LogSeverity { kInfo = 0, kWarning = 1 }; // Valid values for the --gmock_verbose flag. // All logs (informational and warnings) are printed. const char kInfoVerbosity[] = "info"; // Only warnings are printed. const char kWarningVerbosity[] = "warning"; // No logs are printed. const char kErrorVerbosity[] = "error"; // Returns true if and only if a log with the given severity is visible // according to the --gmock_verbose flag. GTEST_API_ bool LogIsVisible(LogSeverity severity); // Prints the given message to stdout if and only if 'severity' >= the level // specified by the --gmock_verbose flag. If stack_frames_to_skip >= // 0, also prints the stack trace excluding the top // stack_frames_to_skip frames. In opt mode, any positive // stack_frames_to_skip is treated as 0, since we don't know which // function calls will be inlined by the compiler and need to be // conservative. GTEST_API_ void Log(LogSeverity severity, const std::string& message, int stack_frames_to_skip); // A marker class that is used to resolve parameterless expectations to the // correct overload. This must not be instantiable, to prevent client code from // accidentally resolving to the overload; for example: // // ON_CALL(mock, Method({}, nullptr))... // class WithoutMatchers { private: WithoutMatchers() {} friend GTEST_API_ WithoutMatchers GetWithoutMatchers(); }; // Internal use only: access the singleton instance of WithoutMatchers. GTEST_API_ WithoutMatchers GetWithoutMatchers(); // Disable MSVC warnings for infinite recursion, since in this case the // the recursion is unreachable. #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4717) #endif // Invalid() is usable as an expression of type T, but will terminate // the program with an assertion failure if actually run. This is useful // when a value of type T is needed for compilation, but the statement // will not really be executed (or we don't care if the statement // crashes). template inline T Invalid() { Assert(false, "", -1, "Internal error: attempt to return invalid value"); // This statement is unreachable, and would never terminate even if it // could be reached. It is provided only to placate compiler warnings // about missing return statements. return Invalid(); } #ifdef _MSC_VER # pragma warning(pop) #endif // Given a raw type (i.e. having no top-level reference or const // modifier) RawContainer that's either an STL-style container or a // native array, class StlContainerView has the // following members: // // - type is a type that provides an STL-style container view to // (i.e. implements the STL container concept for) RawContainer; // - const_reference is a type that provides a reference to a const // RawContainer; // - ConstReference(raw_container) returns a const reference to an STL-style // container view to raw_container, which is a RawContainer. // - Copy(raw_container) returns an STL-style container view of a // copy of raw_container, which is a RawContainer. // // This generic version is used when RawContainer itself is already an // STL-style container. template class StlContainerView { public: typedef RawContainer type; typedef const type& const_reference; static const_reference ConstReference(const RawContainer& container) { static_assert(!std::is_const::value, "RawContainer type must not be const"); return container; } static type Copy(const RawContainer& container) { return container; } }; // This specialization is used when RawContainer is a native array type. template class StlContainerView { public: typedef typename std::remove_const::type RawElement; typedef internal::NativeArray type; // NativeArray can represent a native array either by value or by // reference (selected by a constructor argument), so 'const type' // can be used to reference a const native array. We cannot // 'typedef const type& const_reference' here, as that would mean // ConstReference() has to return a reference to a local variable. typedef const type const_reference; static const_reference ConstReference(const Element (&array)[N]) { static_assert(std::is_same::value, "Element type must not be const"); return type(array, N, RelationToSourceReference()); } static type Copy(const Element (&array)[N]) { return type(array, N, RelationToSourceCopy()); } }; // This specialization is used when RawContainer is a native array // represented as a (pointer, size) tuple. template class StlContainerView< ::std::tuple > { public: typedef typename std::remove_const< typename std::pointer_traits::element_type>::type RawElement; typedef internal::NativeArray type; typedef const type const_reference; static const_reference ConstReference( const ::std::tuple& array) { return type(std::get<0>(array), std::get<1>(array), RelationToSourceReference()); } static type Copy(const ::std::tuple& array) { return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy()); } }; // The following specialization prevents the user from instantiating // StlContainer with a reference type. template class StlContainerView; // A type transform to remove constness from the first part of a pair. // Pairs like that are used as the value_type of associative containers, // and this transform produces a similar but assignable pair. template struct RemoveConstFromKey { typedef T type; }; // Partially specialized to remove constness from std::pair. template struct RemoveConstFromKey > { typedef std::pair type; }; // Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to // reduce code size. GTEST_API_ void IllegalDoDefault(const char* file, int line); template auto ApplyImpl(F&& f, Tuple&& args, IndexSequence) -> decltype( std::forward(f)(std::get(std::forward(args))...)) { return std::forward(f)(std::get(std::forward(args))...); } // Apply the function to a tuple of arguments. template auto Apply(F&& f, Tuple&& args) -> decltype( ApplyImpl(std::forward(f), std::forward(args), MakeIndexSequence::type>::value>())) { return ApplyImpl(std::forward(f), std::forward(args), MakeIndexSequence::type>::value>()); } // Template struct Function, where F must be a function type, contains // the following typedefs: // // Result: the function's return type. // Arg: the type of the N-th argument, where N starts with 0. // ArgumentTuple: the tuple type consisting of all parameters of F. // ArgumentMatcherTuple: the tuple type consisting of Matchers for all // parameters of F. // MakeResultVoid: the function type obtained by substituting void // for the return type of F. // MakeResultIgnoredValue: // the function type obtained by substituting Something // for the return type of F. template struct Function; template struct Function { using Result = R; static constexpr size_t ArgumentCount = sizeof...(Args); template using Arg = ElemFromList; using ArgumentTuple = std::tuple; using ArgumentMatcherTuple = std::tuple...>; using MakeResultVoid = void(Args...); using MakeResultIgnoredValue = IgnoredValue(Args...); }; template constexpr size_t Function::ArgumentCount; #ifdef _MSC_VER # pragma warning(pop) #endif } // namespace internal } // namespace testing #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ // Expands and concatenates the arguments. Constructed macros reevaluate. #define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2) // Expands and stringifies the only argument. #define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__) // Returns empty. Given a variadic number of arguments. #define GMOCK_PP_EMPTY(...) // Returns a comma. Given a variadic number of arguments. #define GMOCK_PP_COMMA(...) , // Returns the only argument. #define GMOCK_PP_IDENTITY(_1) _1 // Evaluates to the number of arguments after expansion. // // #define PAIR x, y // // GMOCK_PP_NARG() => 1 // GMOCK_PP_NARG(x) => 1 // GMOCK_PP_NARG(x, y) => 2 // GMOCK_PP_NARG(PAIR) => 2 // // Requires: the number of arguments after expansion is at most 15. #define GMOCK_PP_NARG(...) \ GMOCK_PP_INTERNAL_16TH( \ (__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)) // Returns 1 if the expansion of arguments has an unprotected comma. Otherwise // returns 0. Requires no more than 15 unprotected commas. #define GMOCK_PP_HAS_COMMA(...) \ GMOCK_PP_INTERNAL_16TH( \ (__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)) // Returns the first argument. #define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg)) // Returns the tail. A variadic list of all arguments minus the first. Requires // at least one argument. #define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__)) // Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__) #define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \ GMOCK_PP_IDENTITY( \ GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__)) // If the arguments after expansion have no tokens, evaluates to `1`. Otherwise // evaluates to `0`. // // Requires: * the number of arguments after expansion is at most 15. // * If the argument is a macro, it must be able to be called with one // argument. // // Implementation details: // // There is one case when it generates a compile error: if the argument is macro // that cannot be called with one argument. // // #define M(a, b) // it doesn't matter what it expands to // // // Expected: expands to `0`. // // Actual: compile error. // GMOCK_PP_IS_EMPTY(M) // // There are 4 cases tested: // // * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0. // * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0. // * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma. // Expected 0 // * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in // parenthesis, or is a macro that ()-evaluates to comma. Expected 1. // // We trigger detection on '0001', i.e. on empty. #define GMOCK_PP_IS_EMPTY(...) \ GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__), \ GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \ GMOCK_PP_HAS_COMMA(__VA_ARGS__()), \ GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__())) // Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0. #define GMOCK_PP_IF(_Cond, _Then, _Else) \ GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else) // Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses. // // GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c // GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f // #define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \ GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else)) // Evaluates to the number of arguments after expansion. Identifies 'empty' as // 0. // // #define PAIR x, y // // GMOCK_PP_NARG0() => 0 // GMOCK_PP_NARG0(x) => 1 // GMOCK_PP_NARG0(x, y) => 2 // GMOCK_PP_NARG0(PAIR) => 2 // // Requires: * the number of arguments after expansion is at most 15. // * If the argument is a macro, it must be able to be called with one // argument. #define GMOCK_PP_NARG0(...) \ GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__)) // Expands to 1 if the first argument starts with something in parentheses, // otherwise to 0. #define GMOCK_PP_IS_BEGIN_PARENS(...) \ GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \ GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__)) // Expands to 1 is there is only one argument and it is enclosed in parentheses. #define GMOCK_PP_IS_ENCLOSED_PARENS(...) \ GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \ GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0) // Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1. #define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__ // Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data, // eK) as many of GMOCK_INTERNAL_NARG0 _Tuple. // Requires: * |_Macro| can be called with 3 arguments. // * |_Tuple| expansion has no more than 15 elements. #define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple) \ GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \ (0, _Macro, _Data, _Tuple) // Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, ) // Empty if _K = 0. // Requires: * |_Macro| can be called with 3 arguments. // * |_K| literal between 0 and 15 #define GMOCK_PP_REPEAT(_Macro, _Data, _N) \ GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \ (0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE) // Increments the argument, requires the argument to be between 0 and 15. #define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i) // Returns comma if _i != 0. Requires _i to be between 0 and 15. #define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i) // Internal details follow. Do not use any of these symbols outside of this // file or we will break your code. #define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , ) #define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2 #define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__ #define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5 #define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4) \ GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \ _1, _2, _3, _4)) #define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 , #define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then #define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else // Because of MSVC treating a token with a comma in it as a single token when // passed to another macro, we need to force it to evaluate it as multiple // tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We // define one per possible macro that relies on this behavior. Note "_Args" must // be parenthesized. #define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \ _10, _11, _12, _13, _14, _15, _16, \ ...) \ _16 #define GMOCK_PP_INTERNAL_16TH(_Args) \ GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args) #define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1 #define GMOCK_PP_INTERNAL_HEAD(_Args) \ GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args) #define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__ #define GMOCK_PP_INTERNAL_TAIL(_Args) \ GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args) #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _ #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1, #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \ 0, #define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__ #define GMOCK_PP_INTERNAL_INC_0 1 #define GMOCK_PP_INTERNAL_INC_1 2 #define GMOCK_PP_INTERNAL_INC_2 3 #define GMOCK_PP_INTERNAL_INC_3 4 #define GMOCK_PP_INTERNAL_INC_4 5 #define GMOCK_PP_INTERNAL_INC_5 6 #define GMOCK_PP_INTERNAL_INC_6 7 #define GMOCK_PP_INTERNAL_INC_7 8 #define GMOCK_PP_INTERNAL_INC_8 9 #define GMOCK_PP_INTERNAL_INC_9 10 #define GMOCK_PP_INTERNAL_INC_10 11 #define GMOCK_PP_INTERNAL_INC_11 12 #define GMOCK_PP_INTERNAL_INC_12 13 #define GMOCK_PP_INTERNAL_INC_13 14 #define GMOCK_PP_INTERNAL_INC_14 15 #define GMOCK_PP_INTERNAL_INC_15 16 #define GMOCK_PP_INTERNAL_COMMA_IF_0 #define GMOCK_PP_INTERNAL_COMMA_IF_1 , #define GMOCK_PP_INTERNAL_COMMA_IF_2 , #define GMOCK_PP_INTERNAL_COMMA_IF_3 , #define GMOCK_PP_INTERNAL_COMMA_IF_4 , #define GMOCK_PP_INTERNAL_COMMA_IF_5 , #define GMOCK_PP_INTERNAL_COMMA_IF_6 , #define GMOCK_PP_INTERNAL_COMMA_IF_7 , #define GMOCK_PP_INTERNAL_COMMA_IF_8 , #define GMOCK_PP_INTERNAL_COMMA_IF_9 , #define GMOCK_PP_INTERNAL_COMMA_IF_10 , #define GMOCK_PP_INTERNAL_COMMA_IF_11 , #define GMOCK_PP_INTERNAL_COMMA_IF_12 , #define GMOCK_PP_INTERNAL_COMMA_IF_13 , #define GMOCK_PP_INTERNAL_COMMA_IF_14 , #define GMOCK_PP_INTERNAL_COMMA_IF_15 , #define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \ _Macro(_i, _Data, _element) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) #endif namespace testing { // To implement an action Foo, define: // 1. a class FooAction that implements the ActionInterface interface, and // 2. a factory function that creates an Action object from a // const FooAction*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Action objects can now be copied like plain values. namespace internal { // BuiltInDefaultValueGetter::Get() returns a // default-constructed T value. BuiltInDefaultValueGetter::Get() crashes with an error. // // This primary template is used when kDefaultConstructible is true. template struct BuiltInDefaultValueGetter { static T Get() { return T(); } }; template struct BuiltInDefaultValueGetter { static T Get() { Assert(false, __FILE__, __LINE__, "Default action undefined for the function return type."); return internal::Invalid(); // The above statement will never be reached, but is required in // order for this function to compile. } }; // BuiltInDefaultValue::Get() returns the "built-in" default value // for type T, which is NULL when T is a raw pointer type, 0 when T is // a numeric type, false when T is bool, or "" when T is string or // std::string. In addition, in C++11 and above, it turns a // default-constructed T value if T is default constructible. For any // other type T, the built-in default T value is undefined, and the // function will abort the process. template class BuiltInDefaultValue { public: // This function returns true if and only if type T has a built-in default // value. static bool Exists() { return ::std::is_default_constructible::value; } static T Get() { return BuiltInDefaultValueGetter< T, ::std::is_default_constructible::value>::Get(); } }; // This partial specialization says that we use the same built-in // default value for T and const T. template class BuiltInDefaultValue { public: static bool Exists() { return BuiltInDefaultValue::Exists(); } static T Get() { return BuiltInDefaultValue::Get(); } }; // This partial specialization defines the default values for pointer // types. template class BuiltInDefaultValue { public: static bool Exists() { return true; } static T* Get() { return nullptr; } }; // The following specializations define the default values for // specific types we care about. #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ template <> \ class BuiltInDefaultValue { \ public: \ static bool Exists() { return true; } \ static type Get() { return value; } \ } GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); // There's no need for a default action for signed wchar_t, as that // type is the same as wchar_t for gcc, and invalid for MSVC. // // There's also no need for a default action for unsigned wchar_t, as // that type is the same as unsigned int for gcc, and invalid for // MSVC. #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT #endif GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ // Simple two-arg form of std::disjunction. template using disjunction = typename ::std::conditional::type; } // namespace internal // When an unexpected function call is encountered, Google Mock will // let it return a default value if the user has specified one for its // return type, or if the return type has a built-in default value; // otherwise Google Mock won't know what value to return and will have // to abort the process. // // The DefaultValue class allows a user to specify the // default value for a type T that is both copyable and publicly // destructible (i.e. anything that can be used as a function return // type). The usage is: // // // Sets the default value for type T to be foo. // DefaultValue::Set(foo); template class DefaultValue { public: // Sets the default value for type T; requires T to be // copy-constructable and have a public destructor. static void Set(T x) { delete producer_; producer_ = new FixedValueProducer(x); } // Provides a factory function to be called to generate the default value. // This method can be used even if T is only move-constructible, but it is not // limited to that case. typedef T (*FactoryFunction)(); static void SetFactory(FactoryFunction factory) { delete producer_; producer_ = new FactoryValueProducer(factory); } // Unsets the default value for type T. static void Clear() { delete producer_; producer_ = nullptr; } // Returns true if and only if the user has set the default value for type T. static bool IsSet() { return producer_ != nullptr; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue::Exists(); } // Returns the default value for type T if the user has set one; // otherwise returns the built-in default value. Requires that Exists() // is true, which ensures that the return value is well-defined. static T Get() { return producer_ == nullptr ? internal::BuiltInDefaultValue::Get() : producer_->Produce(); } private: class ValueProducer { public: virtual ~ValueProducer() {} virtual T Produce() = 0; }; class FixedValueProducer : public ValueProducer { public: explicit FixedValueProducer(T value) : value_(value) {} T Produce() override { return value_; } private: const T value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); }; class FactoryValueProducer : public ValueProducer { public: explicit FactoryValueProducer(FactoryFunction factory) : factory_(factory) {} T Produce() override { return factory_(); } private: const FactoryFunction factory_; GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); }; static ValueProducer* producer_; }; // This partial specialization allows a user to set default values for // reference types. template class DefaultValue { public: // Sets the default value for type T&. static void Set(T& x) { // NOLINT address_ = &x; } // Unsets the default value for type T&. static void Clear() { address_ = nullptr; } // Returns true if and only if the user has set the default value for type T&. static bool IsSet() { return address_ != nullptr; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue::Exists(); } // Returns the default value for type T& if the user has set one; // otherwise returns the built-in default value if there is one; // otherwise aborts the process. static T& Get() { return address_ == nullptr ? internal::BuiltInDefaultValue::Get() : *address_; } private: static T* address_; }; // This specialization allows DefaultValue::Get() to // compile. template <> class DefaultValue { public: static bool Exists() { return true; } static void Get() {} }; // Points to the user-set default value for type T. template typename DefaultValue::ValueProducer* DefaultValue::producer_ = nullptr; // Points to the user-set default value for type T&. template T* DefaultValue::address_ = nullptr; // Implement this interface to define an action for function type F. template class ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; ActionInterface() {} virtual ~ActionInterface() {} // Performs the action. This method is not const, as in general an // action can have side effects and be stateful. For example, a // get-the-next-element-from-the-collection action will need to // remember the current element. virtual Result Perform(const ArgumentTuple& args) = 0; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); }; // An Action is a copyable and IMMUTABLE (except by assignment) // object that represents an action to be taken when a mock function // of type F is called. The implementation of Action is just a // std::shared_ptr to const ActionInterface. Don't inherit from Action! // You can view an object implementing ActionInterface as a // concrete action (including its current state), and an Action // object as a handle to it. template class Action { // Adapter class to allow constructing Action from a legacy ActionInterface. // New code should create Actions from functors instead. struct ActionAdapter { // Adapter must be copyable to satisfy std::function requirements. ::std::shared_ptr> impl_; template typename internal::Function::Result operator()(Args&&... args) { return impl_->Perform( ::std::forward_as_tuple(::std::forward(args)...)); } }; template using IsCompatibleFunctor = std::is_constructible, G>; public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; // Constructs a null Action. Needed for storing Action objects in // STL containers. Action() {} // Construct an Action from a specified callable. // This cannot take std::function directly, because then Action would not be // directly constructible from lambda (it would require two conversions). template < typename G, typename = typename std::enable_if, std::is_constructible, G>>::value>::type> Action(G&& fun) { // NOLINT Init(::std::forward(fun), IsCompatibleFunctor()); } // Constructs an Action from its implementation. explicit Action(ActionInterface* impl) : fun_(ActionAdapter{::std::shared_ptr>(impl)}) {} // This constructor allows us to turn an Action object into an // Action, as long as F's arguments can be implicitly converted // to Func's and Func's return type can be implicitly converted to F's. template explicit Action(const Action& action) : fun_(action.fun_) {} // Returns true if and only if this is the DoDefault() action. bool IsDoDefault() const { return fun_ == nullptr; } // Performs the action. Note that this method is const even though // the corresponding method in ActionInterface is not. The reason // is that a const Action means that it cannot be re-bound to // another concrete action, not that the concrete action it binds to // cannot change state. (Think of the difference between a const // pointer and a pointer to const.) Result Perform(ArgumentTuple args) const { if (IsDoDefault()) { internal::IllegalDoDefault(__FILE__, __LINE__); } return internal::Apply(fun_, ::std::move(args)); } private: template friend class Action; template void Init(G&& g, ::std::true_type) { fun_ = ::std::forward(g); } template void Init(G&& g, ::std::false_type) { fun_ = IgnoreArgs::type>{::std::forward(g)}; } template struct IgnoreArgs { template Result operator()(const Args&...) const { return function_impl(); } FunctionImpl function_impl; }; // fun_ is an empty function if and only if this is the DoDefault() action. ::std::function fun_; }; // The PolymorphicAction class template makes it easy to implement a // polymorphic action (i.e. an action that can be used in mock // functions of than one type, e.g. Return()). // // To define a polymorphic action, a user first provides a COPYABLE // implementation class that has a Perform() method template: // // class FooAction { // public: // template // Result Perform(const ArgumentTuple& args) const { // // Processes the arguments and returns a result, using // // std::get(args) to get the N-th (0-based) argument in the tuple. // } // ... // }; // // Then the user creates the polymorphic action using // MakePolymorphicAction(object) where object has type FooAction. See // the definition of Return(void) and SetArgumentPointee(value) for // complete examples. template class PolymorphicAction { public: explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} template operator Action() const { return Action(new MonomorphicImpl(impl_)); } private: template class MonomorphicImpl : public ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} Result Perform(const ArgumentTuple& args) override { return impl_.template Perform(args); } private: Impl impl_; }; Impl impl_; }; // Creates an Action from its implementation and returns it. The // created Action object owns the implementation. template Action MakeAction(ActionInterface* impl) { return Action(impl); } // Creates a polymorphic action from its implementation. This is // easier to use than the PolymorphicAction constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicAction(foo); // vs // PolymorphicAction(foo); template inline PolymorphicAction MakePolymorphicAction(const Impl& impl) { return PolymorphicAction(impl); } namespace internal { // Helper struct to specialize ReturnAction to execute a move instead of a copy // on return. Useful for move-only types, but could be used on any type. template struct ByMoveWrapper { explicit ByMoveWrapper(T value) : payload(std::move(value)) {} T payload; }; // Implements the polymorphic Return(x) action, which can be used in // any function that returns the type of x, regardless of the argument // types. // // Note: The value passed into Return must be converted into // Function::Result when this action is cast to Action rather than // when that action is performed. This is important in scenarios like // // MOCK_METHOD1(Method, T(U)); // ... // { // Foo foo; // X x(&foo); // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); // } // // In the example above the variable x holds reference to foo which leaves // scope and gets destroyed. If copying X just copies a reference to foo, // that copy will be left with a hanging reference. If conversion to T // makes a copy of foo, the above code is safe. To support that scenario, we // need to make sure that the type conversion happens inside the EXPECT_CALL // statement, and conversion of the result of Return to Action is a // good place for that. // // The real life example of the above scenario happens when an invocation // of gtl::Container() is passed into Return. // template class ReturnAction { public: // Constructs a ReturnAction object from the value to be returned. // 'value' is passed by value instead of by const reference in order // to allow Return("string literal") to compile. explicit ReturnAction(R value) : value_(new R(std::move(value))) {} // This template type conversion operator allows Return(x) to be // used in ANY function that returns x's type. template operator Action() const { // NOLINT // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename Function::Result Result; GTEST_COMPILE_ASSERT_( !std::is_reference::value, use_ReturnRef_instead_of_Return_to_return_a_reference); static_assert(!std::is_void::value, "Can't use Return() on an action expected to return `void`."); return Action(new Impl(value_)); } private: // Implements the Return(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; // The implicit cast is necessary when Result has more than one // single-argument constructor (e.g. Result is std::vector) and R // has a type conversion operator template. In that case, value_(value) // won't compile as the compiler doesn't known which constructor of // Result to call. ImplicitCast_ forces the compiler to convert R to // Result without considering explicit constructors, thus resolving the // ambiguity. value_ is then initialized using its copy constructor. explicit Impl(const std::shared_ptr& value) : value_before_cast_(*value), value_(ImplicitCast_(value_before_cast_)) {} Result Perform(const ArgumentTuple&) override { return value_; } private: GTEST_COMPILE_ASSERT_(!std::is_reference::value, Result_cannot_be_a_reference_type); // We save the value before casting just in case it is being cast to a // wrapper type. R value_before_cast_; Result value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); }; // Partially specialize for ByMoveWrapper. This version of ReturnAction will // move its contents instead. template class Impl, F> : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(const std::shared_ptr& wrapper) : performed_(false), wrapper_(wrapper) {} Result Perform(const ArgumentTuple&) override { GTEST_CHECK_(!performed_) << "A ByMove() action should only be performed once."; performed_ = true; return std::move(wrapper_->payload); } private: bool performed_; const std::shared_ptr wrapper_; }; const std::shared_ptr value_; }; // Implements the ReturnNull() action. class ReturnNullAction { public: // Allows ReturnNull() to be used in any pointer-returning function. In C++11 // this is enforced by returning nullptr, and in non-C++11 by asserting a // pointer type on compile time. template static Result Perform(const ArgumentTuple&) { return nullptr; } }; // Implements the Return() action. class ReturnVoidAction { public: // Allows Return() to be used in any void-returning function. template static void Perform(const ArgumentTuple&) { static_assert(std::is_void::value, "Result should be void."); } }; // Implements the polymorphic ReturnRef(x) action, which can be used // in any function that returns a reference to the type of x, // regardless of the argument types. template class ReturnRefAction { public: // Constructs a ReturnRefAction object from the reference to be returned. explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT // This template type conversion operator allows ReturnRef(x) to be // used in ANY function that returns a reference to x's type. template operator Action() const { typedef typename Function::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRef(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_(std::is_reference::value, use_Return_instead_of_ReturnRef_to_return_a_value); return Action(new Impl(ref_)); } private: // Implements the ReturnRef(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(T& ref) : ref_(ref) {} // NOLINT Result Perform(const ArgumentTuple&) override { return ref_; } private: T& ref_; }; T& ref_; }; // Implements the polymorphic ReturnRefOfCopy(x) action, which can be // used in any function that returns a reference to the type of x, // regardless of the argument types. template class ReturnRefOfCopyAction { public: // Constructs a ReturnRefOfCopyAction object from the reference to // be returned. explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT // This template type conversion operator allows ReturnRefOfCopy(x) to be // used in ANY function that returns a reference to x's type. template operator Action() const { typedef typename Function::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRefOfCopy(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_( std::is_reference::value, use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); return Action(new Impl(value_)); } private: // Implements the ReturnRefOfCopy(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(const T& value) : value_(value) {} // NOLINT Result Perform(const ArgumentTuple&) override { return value_; } private: T value_; }; const T value_; }; // Implements the polymorphic ReturnRoundRobin(v) action, which can be // used in any function that returns the element_type of v. template class ReturnRoundRobinAction { public: explicit ReturnRoundRobinAction(std::vector values) { GTEST_CHECK_(!values.empty()) << "ReturnRoundRobin requires at least one element."; state_->values = std::move(values); } template T operator()(Args&&...) const { return state_->Next(); } private: struct State { T Next() { T ret_val = values[i++]; if (i == values.size()) i = 0; return ret_val; } std::vector values; size_t i = 0; }; std::shared_ptr state_ = std::make_shared(); }; // Implements the polymorphic DoDefault() action. class DoDefaultAction { public: // This template type conversion operator allows DoDefault() to be // used in any function. template operator Action() const { return Action(); } // NOLINT }; // Implements the Assign action to set a given pointer referent to a // particular value. template class AssignAction { public: AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} template void Perform(const ArgumentTuple& /* args */) const { *ptr_ = value_; } private: T1* const ptr_; const T2 value_; }; #if !GTEST_OS_WINDOWS_MOBILE // Implements the SetErrnoAndReturn action to simulate return from // various system calls and libc functions. template class SetErrnoAndReturnAction { public: SetErrnoAndReturnAction(int errno_value, T result) : errno_(errno_value), result_(result) {} template Result Perform(const ArgumentTuple& /* args */) const { errno = errno_; return result_; } private: const int errno_; const T result_; }; #endif // !GTEST_OS_WINDOWS_MOBILE // Implements the SetArgumentPointee(x) action for any function // whose N-th argument (0-based) is a pointer to x's type. template struct SetArgumentPointeeAction { A value; template void operator()(const Args&... args) const { *::std::get(std::tie(args...)) = value; } }; // Implements the Invoke(object_ptr, &Class::Method) action. template struct InvokeMethodAction { Class* const obj_ptr; const MethodPtr method_ptr; template auto operator()(Args&&... args) const -> decltype((obj_ptr->*method_ptr)(std::forward(args)...)) { return (obj_ptr->*method_ptr)(std::forward(args)...); } }; // Implements the InvokeWithoutArgs(f) action. The template argument // FunctionImpl is the implementation type of f, which can be either a // function pointer or a functor. InvokeWithoutArgs(f) can be used as an // Action as long as f's type is compatible with F. template struct InvokeWithoutArgsAction { FunctionImpl function_impl; // Allows InvokeWithoutArgs(f) to be used as any action whose type is // compatible with f. template auto operator()(const Args&...) -> decltype(function_impl()) { return function_impl(); } }; // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. template struct InvokeMethodWithoutArgsAction { Class* const obj_ptr; const MethodPtr method_ptr; using ReturnType = decltype((std::declval()->*std::declval())()); template ReturnType operator()(const Args&...) const { return (obj_ptr->*method_ptr)(); } }; // Implements the IgnoreResult(action) action. template class IgnoreResultAction { public: explicit IgnoreResultAction(const A& action) : action_(action) {} template operator Action() const { // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename internal::Function::Result Result; // Asserts at compile time that F returns void. static_assert(std::is_void::value, "Result type should be void."); return Action(new Impl(action_)); } private: template class Impl : public ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; explicit Impl(const A& action) : action_(action) {} void Perform(const ArgumentTuple& args) override { // Performs the action and ignores its result. action_.Perform(args); } private: // Type OriginalFunction is the same as F except that its return // type is IgnoredValue. typedef typename internal::Function::MakeResultIgnoredValue OriginalFunction; const Action action_; }; const A action_; }; template struct WithArgsAction { InnerAction action; // The inner action could be anything convertible to Action. // We use the conversion operator to detect the signature of the inner Action. template operator Action() const { // NOLINT using TupleType = std::tuple; Action::type...)> converted(action); return [converted](Args... args) -> R { return converted.Perform(std::forward_as_tuple( std::get(std::forward_as_tuple(std::forward(args)...))...)); }; } }; template struct DoAllAction { private: template using NonFinalType = typename std::conditional::value, T, const T&>::type; template std::vector Convert(IndexSequence) const { return {ActionT(std::get(actions))...}; } public: std::tuple actions; template operator Action() const { // NOLINT struct Op { std::vector...)>> converted; Action last; R operator()(Args... args) const { auto tuple_args = std::forward_as_tuple(std::forward(args)...); for (auto& a : converted) { a.Perform(tuple_args); } return last.Perform(std::move(tuple_args)); } }; return Op{Convert...)>>( MakeIndexSequence()), std::get(actions)}; } }; template struct ReturnNewAction { T* operator()() const { return internal::Apply( [](const Params&... unpacked_params) { return new T(unpacked_params...); }, params); } std::tuple params; }; template struct ReturnArgAction { template auto operator()(const Args&... args) const -> typename std::tuple_element>::type { return std::get(std::tie(args...)); } }; template struct SaveArgAction { Ptr pointer; template void operator()(const Args&... args) const { *pointer = std::get(std::tie(args...)); } }; template struct SaveArgPointeeAction { Ptr pointer; template void operator()(const Args&... args) const { *pointer = *std::get(std::tie(args...)); } }; template struct SetArgRefereeAction { T value; template void operator()(Args&&... args) const { using argk_type = typename ::std::tuple_element>::type; static_assert(std::is_lvalue_reference::value, "Argument must be a reference type."); std::get(std::tie(args...)) = value; } }; template struct SetArrayArgumentAction { I1 first; I2 last; template void operator()(const Args&... args) const { auto value = std::get(std::tie(args...)); for (auto it = first; it != last; ++it, (void)++value) { *value = *it; } } }; template struct DeleteArgAction { template void operator()(const Args&... args) const { delete std::get(std::tie(args...)); } }; template struct ReturnPointeeAction { Ptr pointer; template auto operator()(const Args&...) const -> decltype(*pointer) { return *pointer; } }; #if GTEST_HAS_EXCEPTIONS template struct ThrowAction { T exception; // We use a conversion operator to adapt to any return type. template operator Action() const { // NOLINT T copy = exception; return [copy](Args...) -> R { throw copy; }; } }; #endif // GTEST_HAS_EXCEPTIONS } // namespace internal // An Unused object can be implicitly constructed from ANY value. // This is handy when defining actions that ignore some or all of the // mock function arguments. For example, given // // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); // MOCK_METHOD3(Bar, double(int index, double x, double y)); // // instead of // // double DistanceToOriginWithLabel(const string& label, double x, double y) { // return sqrt(x*x + y*y); // } // double DistanceToOriginWithIndex(int index, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXPECT_CALL(mock, Foo("abc", _, _)) // .WillOnce(Invoke(DistanceToOriginWithLabel)); // EXPECT_CALL(mock, Bar(5, _, _)) // .WillOnce(Invoke(DistanceToOriginWithIndex)); // // you could write // // // We can declare any uninteresting argument as Unused. // double DistanceToOrigin(Unused, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); typedef internal::IgnoredValue Unused; // Creates an action that does actions a1, a2, ..., sequentially in // each invocation. All but the last action will have a readonly view of the // arguments. template internal::DoAllAction::type...> DoAll( Action&&... action) { return {std::forward_as_tuple(std::forward(action)...)}; } // WithArg(an_action) creates an action that passes the k-th // (0-based) argument of the mock function to an_action and performs // it. It adapts an action accepting one argument to one that accepts // multiple arguments. For convenience, we also provide // WithArgs(an_action) (defined below) as a synonym. template internal::WithArgsAction::type, k> WithArg(InnerAction&& action) { return {std::forward(action)}; } // WithArgs(an_action) creates an action that passes // the selected arguments of the mock function to an_action and // performs it. It serves as an adaptor between actions with // different argument lists. template internal::WithArgsAction::type, k, ks...> WithArgs(InnerAction&& action) { return {std::forward(action)}; } // WithoutArgs(inner_action) can be used in a mock function with a // non-empty argument list to perform inner_action, which takes no // argument. In other words, it adapts an action accepting no // argument to one that accepts (and ignores) arguments. template internal::WithArgsAction::type> WithoutArgs(InnerAction&& action) { return {std::forward(action)}; } // Creates an action that returns 'value'. 'value' is passed by value // instead of const reference - otherwise Return("string literal") // will trigger a compiler error about using array as initializer. template internal::ReturnAction Return(R value) { return internal::ReturnAction(std::move(value)); } // Creates an action that returns NULL. inline PolymorphicAction ReturnNull() { return MakePolymorphicAction(internal::ReturnNullAction()); } // Creates an action that returns from a void function. inline PolymorphicAction Return() { return MakePolymorphicAction(internal::ReturnVoidAction()); } // Creates an action that returns the reference to a variable. template inline internal::ReturnRefAction ReturnRef(R& x) { // NOLINT return internal::ReturnRefAction(x); } // Prevent using ReturnRef on reference to temporary. template internal::ReturnRefAction ReturnRef(R&&) = delete; // Creates an action that returns the reference to a copy of the // argument. The copy is created when the action is constructed and // lives as long as the action. template inline internal::ReturnRefOfCopyAction ReturnRefOfCopy(const R& x) { return internal::ReturnRefOfCopyAction(x); } // Modifies the parent action (a Return() action) to perform a move of the // argument instead of a copy. // Return(ByMove()) actions can only be executed once and will assert this // invariant. template internal::ByMoveWrapper ByMove(R x) { return internal::ByMoveWrapper(std::move(x)); } // Creates an action that returns an element of `vals`. Calling this action will // repeatedly return the next value from `vals` until it reaches the end and // will restart from the beginning. template internal::ReturnRoundRobinAction ReturnRoundRobin(std::vector vals) { return internal::ReturnRoundRobinAction(std::move(vals)); } // Creates an action that returns an element of `vals`. Calling this action will // repeatedly return the next value from `vals` until it reaches the end and // will restart from the beginning. template internal::ReturnRoundRobinAction ReturnRoundRobin( std::initializer_list vals) { return internal::ReturnRoundRobinAction(std::vector(vals)); } // Creates an action that does the default action for the give mock function. inline internal::DoDefaultAction DoDefault() { return internal::DoDefaultAction(); } // Creates an action that sets the variable pointed by the N-th // (0-based) function argument to 'value'. template internal::SetArgumentPointeeAction SetArgPointee(T value) { return {std::move(value)}; } // The following version is DEPRECATED. template internal::SetArgumentPointeeAction SetArgumentPointee(T value) { return {std::move(value)}; } // Creates an action that sets a pointer referent to a given value. template PolymorphicAction > Assign(T1* ptr, T2 val) { return MakePolymorphicAction(internal::AssignAction(ptr, val)); } #if !GTEST_OS_WINDOWS_MOBILE // Creates an action that sets errno and returns the appropriate error. template PolymorphicAction > SetErrnoAndReturn(int errval, T result) { return MakePolymorphicAction( internal::SetErrnoAndReturnAction(errval, result)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Various overloads for Invoke(). // Legacy function. // Actions can now be implicitly constructed from callables. No need to create // wrapper objects. // This function exists for backwards compatibility. template typename std::decay::type Invoke(FunctionImpl&& function_impl) { return std::forward(function_impl); } // Creates an action that invokes the given method on the given object // with the mock function's arguments. template internal::InvokeMethodAction Invoke(Class* obj_ptr, MethodPtr method_ptr) { return {obj_ptr, method_ptr}; } // Creates an action that invokes 'function_impl' with no argument. template internal::InvokeWithoutArgsAction::type> InvokeWithoutArgs(FunctionImpl function_impl) { return {std::move(function_impl)}; } // Creates an action that invokes the given method on the given object // with no argument. template internal::InvokeMethodWithoutArgsAction InvokeWithoutArgs( Class* obj_ptr, MethodPtr method_ptr) { return {obj_ptr, method_ptr}; } // Creates an action that performs an_action and throws away its // result. In other words, it changes the return type of an_action to // void. an_action MUST NOT return void, or the code won't compile. template inline internal::IgnoreResultAction IgnoreResult(const A& an_action) { return internal::IgnoreResultAction(an_action); } // Creates a reference wrapper for the given L-value. If necessary, // you can explicitly specify the type of the reference. For example, // suppose 'derived' is an object of type Derived, ByRef(derived) // would wrap a Derived&. If you want to wrap a const Base& instead, // where Base is a base class of Derived, just write: // // ByRef(derived) // // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. // However, it may still be used for consistency with ByMove(). template inline ::std::reference_wrapper ByRef(T& l_value) { // NOLINT return ::std::reference_wrapper(l_value); } // The ReturnNew(a1, a2, ..., a_k) action returns a pointer to a new // instance of type T, constructed on the heap with constructor arguments // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. template internal::ReturnNewAction::type...> ReturnNew( Params&&... params) { return {std::forward_as_tuple(std::forward(params)...)}; } // Action ReturnArg() returns the k-th argument of the mock function. template internal::ReturnArgAction ReturnArg() { return {}; } // Action SaveArg(pointer) saves the k-th (0-based) argument of the // mock function to *pointer. template internal::SaveArgAction SaveArg(Ptr pointer) { return {pointer}; } // Action SaveArgPointee(pointer) saves the value pointed to // by the k-th (0-based) argument of the mock function to *pointer. template internal::SaveArgPointeeAction SaveArgPointee(Ptr pointer) { return {pointer}; } // Action SetArgReferee(value) assigns 'value' to the variable // referenced by the k-th (0-based) argument of the mock function. template internal::SetArgRefereeAction::type> SetArgReferee( T&& value) { return {std::forward(value)}; } // Action SetArrayArgument(first, last) copies the elements in // source range [first, last) to the array pointed to by the k-th // (0-based) argument, which can be either a pointer or an // iterator. The action does not take ownership of the elements in the // source range. template internal::SetArrayArgumentAction SetArrayArgument(I1 first, I2 last) { return {first, last}; } // Action DeleteArg() deletes the k-th (0-based) argument of the mock // function. template internal::DeleteArgAction DeleteArg() { return {}; } // This action returns the value pointed to by 'pointer'. template internal::ReturnPointeeAction ReturnPointee(Ptr pointer) { return {pointer}; } // Action Throw(exception) can be used in a mock function of any type // to throw the given exception. Any copyable value can be thrown. #if GTEST_HAS_EXCEPTIONS template internal::ThrowAction::type> Throw(T&& exception) { return {std::forward(exception)}; } #endif // GTEST_HAS_EXCEPTIONS namespace internal { // A macro from the ACTION* family (defined later in gmock-generated-actions.h) // defines an action that can be used in a mock function. Typically, // these actions only care about a subset of the arguments of the mock // function. For example, if such an action only uses the second // argument, it can be used in any mock function that takes >= 2 // arguments where the type of the second argument is compatible. // // Therefore, the action implementation must be prepared to take more // arguments than it needs. The ExcessiveArg type is used to // represent those excessive arguments. In order to keep the compiler // error messages tractable, we define it in the testing namespace // instead of testing::internal. However, this is an INTERNAL TYPE // and subject to change without notice, so a user MUST NOT USE THIS // TYPE DIRECTLY. struct ExcessiveArg {}; // Builds an implementation of an Action<> for some particular signature, using // a class defined by an ACTION* macro. template struct ActionImpl; template struct ImplBase { struct Holder { // Allows each copy of the Action<> to get to the Impl. explicit operator const Impl&() const { return *ptr; } std::shared_ptr ptr; }; using type = typename std::conditional::value, Impl, Holder>::type; }; template struct ActionImpl : ImplBase::type { using Base = typename ImplBase::type; using function_type = R(Args...); using args_type = std::tuple; ActionImpl() = default; // Only defined if appropriate for Base. explicit ActionImpl(std::shared_ptr impl) : Base{std::move(impl)} { } R operator()(Args&&... arg) const { static constexpr size_t kMaxArgs = sizeof...(Args) <= 10 ? sizeof...(Args) : 10; return Apply(MakeIndexSequence{}, MakeIndexSequence<10 - kMaxArgs>{}, args_type{std::forward(arg)...}); } template R Apply(IndexSequence, IndexSequence, const args_type& args) const { // Impl need not be specific to the signature of action being implemented; // only the implementing function body needs to have all of the specific // types instantiated. Up to 10 of the args that are provided by the // args_type get passed, followed by a dummy of unspecified type for the // remainder up to 10 explicit args. static constexpr ExcessiveArg kExcessArg{}; return static_cast(*this).template gmock_PerformImpl< /*function_type=*/function_type, /*return_type=*/R, /*args_type=*/args_type, /*argN_type=*/typename std::tuple_element::type...>( /*args=*/args, std::get(args)..., ((void)excess_id, kExcessArg)...); } }; // Stores a default-constructed Impl as part of the Action<>'s // std::function<>. The Impl should be trivial to copy. template ::testing::Action MakeAction() { return ::testing::Action(ActionImpl()); } // Stores just the one given instance of Impl. template ::testing::Action MakeAction(std::shared_ptr impl) { return ::testing::Action(ActionImpl(std::move(impl))); } #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ GMOCK_INTERNAL_ARG_UNUSED, , 10) #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type #define GMOCK_ACTION_TYPE_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ , param##_type gmock_p##i #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ , std::forward(gmock_p##i) #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ , param(::std::forward(gmock_p##i)) #define GMOCK_ACTION_INIT_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; #define GMOCK_ACTION_FIELD_PARAMS_(params) \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ template \ class full_name { \ public: \ explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ : impl_(std::make_shared( \ GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \ full_name(const full_name&) = default; \ full_name(full_name&&) noexcept = default; \ template \ operator ::testing::Action() const { \ return ::testing::internal::MakeAction(impl_); \ } \ private: \ class gmock_Impl { \ public: \ explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ : GMOCK_ACTION_INIT_PARAMS_(params) {} \ template \ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ GMOCK_ACTION_FIELD_PARAMS_(params) \ }; \ std::shared_ptr impl_; \ }; \ template \ inline full_name name( \ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ return full_name( \ GMOCK_ACTION_GVALUE_PARAMS_(params)); \ } \ template \ template \ return_type full_name::gmock_Impl:: \ gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const } // namespace internal // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. #define ACTION(name) \ class name##Action { \ public: \ explicit name##Action() noexcept {} \ name##Action(const name##Action&) noexcept {} \ template \ operator ::testing::Action() const { \ return ::testing::internal::MakeAction(); \ } \ private: \ class gmock_Impl { \ public: \ template \ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ }; \ }; \ inline name##Action name() GTEST_MUST_USE_RESULT_; \ inline name##Action name() { return name##Action(); } \ template \ return_type name##Action::gmock_Impl::gmock_PerformImpl( \ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) #define ACTION_P2(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) #define ACTION_P3(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) #define ACTION_P4(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) #define ACTION_P5(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) #define ACTION_P6(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) #define ACTION_P7(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) #define ACTION_P8(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) #define ACTION_P9(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) #define ACTION_P10(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) } // namespace testing #ifdef _MSC_VER # pragma warning(pop) #endif #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used cardinalities. More // cardinalities can be defined by the user implementing the // CardinalityInterface interface if necessary. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ #include #include #include // NOLINT GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) namespace testing { // To implement a cardinality Foo, define: // 1. a class FooCardinality that implements the // CardinalityInterface interface, and // 2. a factory function that creates a Cardinality object from a // const FooCardinality*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Cardinality objects can now be copied like plain values. // The implementation of a cardinality. class CardinalityInterface { public: virtual ~CardinalityInterface() {} // Conservative estimate on the lower/upper bound of the number of // calls allowed. virtual int ConservativeLowerBound() const { return 0; } virtual int ConservativeUpperBound() const { return INT_MAX; } // Returns true if and only if call_count calls will satisfy this // cardinality. virtual bool IsSatisfiedByCallCount(int call_count) const = 0; // Returns true if and only if call_count calls will saturate this // cardinality. virtual bool IsSaturatedByCallCount(int call_count) const = 0; // Describes self to an ostream. virtual void DescribeTo(::std::ostream* os) const = 0; }; // A Cardinality is a copyable and IMMUTABLE (except by assignment) // object that specifies how many times a mock function is expected to // be called. The implementation of Cardinality is just a std::shared_ptr // to const CardinalityInterface. Don't inherit from Cardinality! class GTEST_API_ Cardinality { public: // Constructs a null cardinality. Needed for storing Cardinality // objects in STL containers. Cardinality() {} // Constructs a Cardinality from its implementation. explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {} // Conservative estimate on the lower/upper bound of the number of // calls allowed. int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); } int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); } // Returns true if and only if call_count calls will satisfy this // cardinality. bool IsSatisfiedByCallCount(int call_count) const { return impl_->IsSatisfiedByCallCount(call_count); } // Returns true if and only if call_count calls will saturate this // cardinality. bool IsSaturatedByCallCount(int call_count) const { return impl_->IsSaturatedByCallCount(call_count); } // Returns true if and only if call_count calls will over-saturate this // cardinality, i.e. exceed the maximum number of allowed calls. bool IsOverSaturatedByCallCount(int call_count) const { return impl_->IsSaturatedByCallCount(call_count) && !impl_->IsSatisfiedByCallCount(call_count); } // Describes self to an ostream void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the given actual call count to an ostream. static void DescribeActualCallCountTo(int actual_call_count, ::std::ostream* os); private: std::shared_ptr impl_; }; // Creates a cardinality that allows at least n calls. GTEST_API_ Cardinality AtLeast(int n); // Creates a cardinality that allows at most n calls. GTEST_API_ Cardinality AtMost(int n); // Creates a cardinality that allows any number of calls. GTEST_API_ Cardinality AnyNumber(); // Creates a cardinality that allows between min and max calls. GTEST_API_ Cardinality Between(int min, int max); // Creates a cardinality that allows exactly n calls. GTEST_API_ Cardinality Exactly(int n); // Creates a cardinality from its implementation. inline Cardinality MakeCardinality(const CardinalityInterface* c) { return Cardinality(c); } } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements MOCK_METHOD. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT #include // IWYU pragma: keep #include // IWYU pragma: keep // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements the ON_CALL() and EXPECT_CALL() macros. // // A user can use the ON_CALL() macro to specify the default action of // a mock method. The syntax is: // // ON_CALL(mock_object, Method(argument-matchers)) // .With(multi-argument-matcher) // .WillByDefault(action); // // where the .With() clause is optional. // // A user can use the EXPECT_CALL() macro to specify an expectation on // a mock method. The syntax is: // // EXPECT_CALL(mock_object, Method(argument-matchers)) // .With(multi-argument-matchers) // .Times(cardinality) // .InSequence(sequences) // .After(expectations) // .WillOnce(action) // .WillRepeatedly(action) // .RetiresOnSaturation(); // // where all clauses are optional, and .InSequence()/.After()/ // .WillOnce() can appear any number of times. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ #include #include #include #include #include #include #include #include #include // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // The MATCHER* family of macros can be used in a namespace scope to // define custom matchers easily. // // Basic Usage // =========== // // The syntax // // MATCHER(name, description_string) { statements; } // // defines a matcher with the given name that executes the statements, // which must return a bool to indicate if the match succeeds. Inside // the statements, you can refer to the value being matched by 'arg', // and refer to its type by 'arg_type'. // // The description string documents what the matcher does, and is used // to generate the failure message when the match fails. Since a // MATCHER() is usually defined in a header file shared by multiple // C++ source files, we require the description to be a C-string // literal to avoid possible side effects. It can be empty, in which // case we'll use the sequence of words in the matcher name as the // description. // // For example: // // MATCHER(IsEven, "") { return (arg % 2) == 0; } // // allows you to write // // // Expects mock_foo.Bar(n) to be called where n is even. // EXPECT_CALL(mock_foo, Bar(IsEven())); // // or, // // // Verifies that the value of some_expression is even. // EXPECT_THAT(some_expression, IsEven()); // // If the above assertion fails, it will print something like: // // Value of: some_expression // Expected: is even // Actual: 7 // // where the description "is even" is automatically calculated from the // matcher name IsEven. // // Argument Type // ============= // // Note that the type of the value being matched (arg_type) is // determined by the context in which you use the matcher and is // supplied to you by the compiler, so you don't need to worry about // declaring it (nor can you). This allows the matcher to be // polymorphic. For example, IsEven() can be used to match any type // where the value of "(arg % 2) == 0" can be implicitly converted to // a bool. In the "Bar(IsEven())" example above, if method Bar() // takes an int, 'arg_type' will be int; if it takes an unsigned long, // 'arg_type' will be unsigned long; and so on. // // Parameterizing Matchers // ======================= // // Sometimes you'll want to parameterize the matcher. For that you // can use another macro: // // MATCHER_P(name, param_name, description_string) { statements; } // // For example: // // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } // // will allow you to write: // // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); // // which may lead to this message (assuming n is 10): // // Value of: Blah("a") // Expected: has absolute value 10 // Actual: -9 // // Note that both the matcher description and its parameter are // printed, making the message human-friendly. // // In the matcher definition body, you can write 'foo_type' to // reference the type of a parameter named 'foo'. For example, in the // body of MATCHER_P(HasAbsoluteValue, value) above, you can write // 'value_type' to refer to the type of 'value'. // // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to // support multi-parameter matchers. // // Describing Parameterized Matchers // ================================= // // The last argument to MATCHER*() is a string-typed expression. The // expression can reference all of the matcher's parameters and a // special bool-typed variable named 'negation'. When 'negation' is // false, the expression should evaluate to the matcher's description; // otherwise it should evaluate to the description of the negation of // the matcher. For example, // // using testing::PrintToString; // // MATCHER_P2(InClosedRange, low, hi, // std::string(negation ? "is not" : "is") + " in range [" + // PrintToString(low) + ", " + PrintToString(hi) + "]") { // return low <= arg && arg <= hi; // } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: is in range [4, 6] // ... // Expected: is not in range [2, 4] // // If you specify "" as the description, the failure message will // contain the sequence of words in the matcher name followed by the // parameter values printed as a tuple. For example, // // MATCHER_P2(InClosedRange, low, hi, "") { ... } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: in closed range (4, 6) // ... // Expected: not (in closed range (2, 4)) // // Types of Matcher Parameters // =========================== // // For the purpose of typing, you can view // // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } // // as shorthand for // // template // FooMatcherPk // Foo(p1_type p1, ..., pk_type pk) { ... } // // When you write Foo(v1, ..., vk), the compiler infers the types of // the parameters v1, ..., and vk for you. If you are not happy with // the result of the type inference, you can specify the types by // explicitly instantiating the template, as in Foo(5, // false). As said earlier, you don't get to (or need to) specify // 'arg_type' as that's determined by the context in which the matcher // is used. You can assign the result of expression Foo(p1, ..., pk) // to a variable of type FooMatcherPk. This // can be useful when composing matchers. // // While you can instantiate a matcher template with reference types, // passing the parameters by pointer usually makes your code more // readable. If, however, you still want to pass a parameter by // reference, be aware that in the failure message generated by the // matcher you will see the value of the referenced object but not its // address. // // Explaining Match Results // ======================== // // Sometimes the matcher description alone isn't enough to explain why // the match has failed or succeeded. For example, when expecting a // long string, it can be very helpful to also print the diff between // the expected string and the actual one. To achieve that, you can // optionally stream additional information to a special variable // named result_listener, whose type is a pointer to class // MatchResultListener: // // MATCHER_P(EqualsLongString, str, "") { // if (arg == str) return true; // // *result_listener << "the difference: " /// << DiffStrings(str, arg); // return false; // } // // Overloading Matchers // ==================== // // You can overload matchers with different numbers of parameters: // // MATCHER_P(Blah, a, description_string1) { ... } // MATCHER_P2(Blah, a, b, description_string2) { ... } // // Caveats // ======= // // When defining a new matcher, you should also consider implementing // MatcherInterface or using MakePolymorphicMatcher(). These // approaches require more work than the MATCHER* macros, but also // give you more control on the types of the value being matched and // the matcher parameters, which may leads to better compiler error // messages when the matcher is used wrong. They also allow // overloading matchers based on parameter types (as opposed to just // based on the number of parameters). // // MATCHER*() can only be used in a namespace scope as templates cannot be // declared inside of a local class. // // More Information // ================ // // To learn more about using these macros, please search for 'MATCHER' // on // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md // // This file also implements some commonly used argument matchers. More // matchers can be defined by the user implementing the // MatcherInterface interface if necessary. // // See googletest/include/gtest/gtest-matchers.h for the definition of class // Matcher, class MatcherInterface, and others. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #include #include #include #include #include #include #include // NOLINT #include #include #include #include #include // MSVC warning C5046 is new as of VS2017 version 15.8. #if defined(_MSC_VER) && _MSC_VER >= 1915 #define GMOCK_MAYBE_5046_ 5046 #else #define GMOCK_MAYBE_5046_ #endif GTEST_DISABLE_MSC_WARNINGS_PUSH_( 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by clients of class B */ /* Symbol involving type with internal linkage not defined */) namespace testing { // To implement a matcher Foo for type T, define: // 1. a class FooMatcherImpl that implements the // MatcherInterface interface, and // 2. a factory function that creates a Matcher object from a // FooMatcherImpl*. // // The two-level delegation design makes it possible to allow a user // to write "v" instead of "Eq(v)" where a Matcher is expected, which // is impossible if we pass matchers by pointers. It also eases // ownership management as Matcher objects can now be copied like // plain values. // A match result listener that stores the explanation in a string. class StringMatchResultListener : public MatchResultListener { public: StringMatchResultListener() : MatchResultListener(&ss_) {} // Returns the explanation accumulated so far. std::string str() const { return ss_.str(); } // Clears the explanation accumulated so far. void Clear() { ss_.str(""); } private: ::std::stringstream ss_; GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); }; // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // The MatcherCastImpl class template is a helper for implementing // MatcherCast(). We need this helper in order to partially // specialize the implementation of MatcherCast() (C++ allows // class/struct templates to be partially specialized, but not // function templates.). // This general version is used when MatcherCast()'s argument is a // polymorphic matcher (i.e. something that can be converted to a // Matcher but is not one yet; for example, Eq(value)) or a value (for // example, "hello"). template class MatcherCastImpl { public: static Matcher Cast(const M& polymorphic_matcher_or_value) { // M can be a polymorphic matcher, in which case we want to use // its conversion operator to create Matcher. Or it can be a value // that should be passed to the Matcher's constructor. // // We can't call Matcher(polymorphic_matcher_or_value) when M is a // polymorphic matcher because it'll be ambiguous if T has an implicit // constructor from M (this usually happens when T has an implicit // constructor from any type). // // It won't work to unconditionally implicit_cast // polymorphic_matcher_or_value to Matcher because it won't trigger // a user-defined conversion from M to T if one exists (assuming M is // a value). return CastImpl(polymorphic_matcher_or_value, std::is_convertible>{}, std::is_convertible{}); } private: template static Matcher CastImpl(const M& polymorphic_matcher_or_value, std::true_type /* convertible_to_matcher */, std::integral_constant) { // M is implicitly convertible to Matcher, which means that either // M is a polymorphic matcher or Matcher has an implicit constructor // from M. In both cases using the implicit conversion will produce a // matcher. // // Even if T has an implicit constructor from M, it won't be called because // creating Matcher would require a chain of two user-defined conversions // (first to create T from M and then to create Matcher from T). return polymorphic_matcher_or_value; } // M can't be implicitly converted to Matcher, so M isn't a polymorphic // matcher. It's a value of a type implicitly convertible to T. Use direct // initialization to create a matcher. static Matcher CastImpl(const M& value, std::false_type /* convertible_to_matcher */, std::true_type /* convertible_to_T */) { return Matcher(ImplicitCast_(value)); } // M can't be implicitly converted to either Matcher or T. Attempt to use // polymorphic matcher Eq(value) in this case. // // Note that we first attempt to perform an implicit cast on the value and // only fall back to the polymorphic Eq() matcher afterwards because the // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end // which might be undefined even when Rhs is implicitly convertible to Lhs // (e.g. std::pair vs. std::pair). // // We don't define this method inline as we need the declaration of Eq(). static Matcher CastImpl(const M& value, std::false_type /* convertible_to_matcher */, std::false_type /* convertible_to_T */); }; // This more specialized version is used when MatcherCast()'s argument // is already a Matcher. This only compiles when type T can be // statically converted to type U. template class MatcherCastImpl > { public: static Matcher Cast(const Matcher& source_matcher) { return Matcher(new Impl(source_matcher)); } private: class Impl : public MatcherInterface { public: explicit Impl(const Matcher& source_matcher) : source_matcher_(source_matcher) {} // We delegate the matching logic to the source matcher. bool MatchAndExplain(T x, MatchResultListener* listener) const override { using FromType = typename std::remove_cv::type>::type>::type; using ToType = typename std::remove_cv::type>::type>::type; // Do not allow implicitly converting base*/& to derived*/&. static_assert( // Do not trigger if only one of them is a pointer. That implies a // regular conversion and not a down_cast. (std::is_pointer::type>::value != std::is_pointer::type>::value) || std::is_same::value || !std::is_base_of::value, "Can't implicitly convert from to "); // Do the cast to `U` explicitly if necessary. // Otherwise, let implicit conversions do the trick. using CastType = typename std::conditional::value, T&, U>::type; return source_matcher_.MatchAndExplain(static_cast(x), listener); } void DescribeTo(::std::ostream* os) const override { source_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { source_matcher_.DescribeNegationTo(os); } private: const Matcher source_matcher_; }; }; // This even more specialized version is used for efficiently casting // a matcher to its own type. template class MatcherCastImpl > { public: static Matcher Cast(const Matcher& matcher) { return matcher; } }; // Template specialization for parameterless Matcher. template class MatcherBaseImpl { public: MatcherBaseImpl() = default; template operator ::testing::Matcher() const { // NOLINT(runtime/explicit) return ::testing::Matcher(new typename Derived::template gmock_Impl()); } }; // Template specialization for Matcher with parameters. template