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Abstract

We focus on a generalization of the classic Minisum approval voting rule, introduced
by Barrot and Lang (2016), and referred to as Conditional Minisum (cms), for multi-issue
elections with preferential dependencies. Under this rule, voters are allowed to declare
dependencies between different issues, but the price we have to pay for this higher level of
expressiveness is that we end up with a computationally hard rule. Motivated by this, we
first focus on finding special cases that admit efficient algorithms for cms. Our main result
in this direction is that we identify the condition of bounded treewidth (of an appropriate
graph, emerging from the provided ballots) as the necessary and sufficient condition for
exact polynomial algorithms, under common complexity assumptions. We then move to
the design of approximation algorithms. For the (still hard) case of binary issues, we identify
natural restrictions on the voters’ ballots, under which we provide the first multiplicative
approximation algorithms for the problem. The restrictions involve upper bounds on the
number of dependencies an issue can have on the others and on the number of alternatives
per issue that a voter can approve. Finally, we also investigate the complexity of problems
related to the strategic control of conditional approval elections by adding or deleting
either voters or alternatives and we show that in most variants of these problems, cms is
computationally resistant against control. Overall, we conclude that cms can be viewed as
a solution that achieves a satisfactory tradeoff between expressiveness and computational
efficiency, when we have a limited number of dependencies among issues, while at the same
time exhibiting sufficient resistance to control.

Keywords: Computational Social Choice; Multi-issue Elections; Algorithms and Computational Complexity

1. Introduction

Over the years, the field of social choice theory has focused more and more on decision
making over combinatorial domains (Lang & Xia, 2016), which involves settings like multi-
winner elections, e.g. for the formation of a committee, and elections for a set of issues
that need to be decided upon simultaneously, often referred to as multiple referenda. In this
work, we focus on approval voting as a means for collective decision making on multiple
issues with multiple alternatives each. Approval voting offers a simple and easy to use
format for running such elections, by having voters express an approval or disapproval
separately for the alternatives of each issue. There is already a range of voting rules that
are based on approval ballots, including the classic Minisum solution, which for each issue
selects the alternative with the highest support from the electorate, along with more recently
introduced methods as outlined in the “Related Work” section, below.

∗. This work has evolved as an extended merge of two preliminary conference publications: (Markakis &
Papasotiropoulos, 2020, 2021).
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However, the rules most commonly studied for approval voting are applicable only when
the issues under consideration are independent. As soon as the voters exhibit preferential
dependencies between the issues, we have more challenges to handle. More precisely, voters’
preferences on a specific issue may be conditioned upon the outcome of other issue(s) and
this is not uncommon in practical scenarios: A resident of a municipality may wish to sup-
port public project A, only if public project B is also implemented (which she evaluates as
more important); a faculty member may want to vote in favor of hiring a new colleague only
if the other new hires have a different research expertise; a group of friends may want to go
to a certain movie theater only if they decide to have dinner at a nearby location; festival
organizers could choose to approve the inclusion of several musical acts in their lineup but
decide to limit the number of acts to a small fixed number, e.g., due to budget constraints;
a grant committee may approve funding for Project X, but only if Project Y didn’t receive
sufficient support from the committee members to be implemented. We can also consider
another example with conditional preferences, taken from recommendation systems for on-
line advertising: suppose an ad management service needs to make a personalized selection
of ads, to be shown on Alice’s favorite news website. For each slot (or area) in the adver-
tising region of the site, there is a set of possible ads to choose from and the overall goal
is to maximize the likelihood that Alice will click on one of these ads. Her likelihood to
click depends on whether she encounters ads that strongly align with her interests. If we
think of the slots as corresponding to issues, a recommendation could be made by looking
at the data from users “similar” to Alice (voters), and their clicking behavior (approvals).
Notably, these voters have conditional preferences, as their probability of clicking on an ad
is influenced when a related ad appears in a nearby slot. For instance, the probability may
increase for products frequently bought together or decrease when a product is defamed by
the ad of another

It is rather obvious that voting separately for each issue cannot provide a good solution in
any of the above settings. Consequently, as detailed in the “Related Work” section, several
approaches have been suggested to take into account preferential dependencies. Neverthe-
less, the majority of these works are suitable for rules where voters are required to express a
ranking over the set of issues or have a numerical representation of their preferences instead
of approval-based preferences. The first work that introduced a framework for expressing
dependencies exclusively in the context of approval voting was by Barrot and Lang (2016).
They defined the notion of a conditional approval ballot (where the voters can specify a
dependency graph for the issues of the election in conjunction with their ballots) and intro-
duced new voting rules, that generalized some of the known rules from the literature of the
standard approval setting. Among the properties that were studied, it was also exhibited
that, in general, a higher level of expressiveness implies higher computational complexity.
More precisely, the Minisum solution (also frequently referred to as the Approval Voting
rule) is known to be efficiently computable in the standard (unconditional) approval setting,
but its generalization, referred to as Conditional Minisum (or cms in short), was shown to
be NP-hard. In the unconditional approval setting, the Minisum solution stands as the
most straightforward method for selecting winning alternatives, and it has established itself
as one of the primary election systems extensively examined in economic theory, political
science and computational social choice, being also widely used in practice (Endriss, 2013).
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Given how central the Minisum solution is, and how practical conditional ballots can
be in real-life scenarios, and in light of the computational challenges presented in (Barrot
& Lang, 2016), it becomes natural to investigate whether cms admits exact algorithms
for certain families of instances or approximation algorithms with provable guarantees.
Progress on this front would allow us to draw conclusions on the applicability of approval-
based elections in which voters are endowed with a significant degree of expressiveness.

In addition to our paper’s focus on winner determination under cms rule, we also take
a step towards examining potential threats, that could arise due to malicious behaviour
within elections over interdependent issues. These explorations can, in principle, contribute
to enhancing the fairness and transparency of elections, ensuring the overall integrity of
the procedure, and paving the way for the development of algorithms aimed at detecting
and preventing malicious attempts. In the realm of strategic considerations, the primary
focal points within the computational social choice literature revolve around questions of
strategyproofness and election control. Strategyproofness is the axiom that is met when
no voter can increase her satisfaction with respect to the rule’s outcome by misreporting
her true preferences; in contrast to the unconditional case, cms is known to be manipulable
(Barrot & Lang, 2016). In our work, we focus on elections’ control and we study a spectrum
of scenarios where the election conductor seeks to control the election outcome, so as to align
with their own preferences, through various strategic actions. While, in many instances, a
controller may be able to influence the input of the election so as to successfully enforce her
will, we examine, from a computational complexity perspective, the question of whether the
conductor can always and in polynomial time exert control over the outcome. To be more
precise, we narrow our focus to worst-case scenarios, examining the existence of instances
where the conductor encounters inherent computational challenges in achieving their desired
outcomes. Similar questions form a very prominent research agenda within computational
social choice as it pertains to understanding the susceptibility of election systems.

Overall, our work indicates that cms stands as a strong candidate for real-life appli-
cations as it strikes a favorable balance between voters’ expressiveness and computational
efficiency, all while exhibiting sufficient robustness against certain malicious efforts.

Contribution. We undertake a study of the Conditional Minisum voting rule, a.k.a. cms,
which attempts to minimize the total dissatisfaction score across all voters in conditional
approval elections, from the viewpoint of algorithms and complexity. Our goals are:

(a.) to enhance the understanding on the complexity implications due to conditional voting
for the winner determination problem under a rule that is known to be efficiently
computable in the absence of dependencies between issues, with respect to both exact
and approximate solutions,

(b.) to identify whether the rule is immune to, or, at least, computationally resistant
against malicious control by strategic actions.

In Section 3.1, we focus on conditions that lead to exact polynomial time algorithms for
computing the optimal solution under cms voting rule. For this, we consider the intuitively
simple (but still NP-hard) case, where each issue can depend on at most one other issue for
every voter, and our main insight is that one can draw conclusions by looking at (undirected
variant of) the global dependency graph of an instance, which is formed by taking the
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union of dependencies by all voters. We later generalize this result for dependencies on
any constant number of issues. Restrictions on the structure of the global dependency
graph allow us to identify the condition of bounded treewidth as the only restriction that
leads to optimal efficient algorithms. More precisely, our results provide characterizations
for the families of cms instances that can be placed in P and FPT, implying that the
condition of bounded treewidth serves as the lynchpin between expressiveness of voters’
ballots and efficiency of solving the winner determination problem. These results also
establish a connection with well studied classes of Constraint Satisfaction Problems, which
can be of independent interest.

In Section 3.2, we provide the first multiplicative approximation algorithms for condi-
tional approval elections of issues with binary domain, under the condition that for every
voter, each issue can depend on at most one other issue. The considered family of instances,
includes the set of instances that were proven to be NP-hard in (Barrot & Lang, 2016). In
the corresponding graph-theoretic representation of the problem, which will be introduced
in Section 2, the condition corresponds to voters with dependency graph of maximum in-
degree no more than 1. The main positive result of the section is an algorithm that achieves
an approximation factor of 1.1037. Interestingly, our algorithm is based on a reduction to
min sat, an optimization version of sat that has rarely been applied in computational
social choice (in contrast to max sat). The result is contingent upon an additional, but
well-motivated from the perspective of social choice, assumption regarding the number of
approved alternatives per issue in a voter’s ballot. Imposing such a further requirement
might at first seem demanding, however, we have also established a strong negative result:
in the absence of further assumptions, no algorithm can attain any bounded multiplica-
tive approximation guarantee, even for instances with binary domains and even if for every
voter, each issue depends on at most one other issue. Concluding the section, we put forth
some additional (and similar in flavor) assumptions that, when satisfied, also enable the
existence of provable approximation guarantees, albeit non-constant. Interestingly, these
results also relate the considered voting rule with classical algorithmic problems.

Moving on, in Section 4, we initiate the algorithmic study of some standard notions of
election control for cms. The problems we examine concern the attempt by an external
agent to enforce the election of certain alternative(s) in either one or every issue under
consideration, by adding or deleting either voters or alternatives. We consider a total of 8
variants of this question, depending on the number of issues to be controlled and on whether
we have addition or deletion of voters/alternatives. We provide a set of 18 computational
complexity results that give a complete picture with respect to the crucial parameters of the
input in every one of the considered problems. Our findings reveal that cms is sufficiently
computationally resistant, against such moves.

Related Work. Approval voting for multi-issue elections has gained great attention in
the recent years, driven by its simplicity and practical potential. Apart from the classic
Minisum solution (Weber, 1978; Brams & Fishburn, 1978, 1982; Laslier & Sanver, 2010),
other rules have also been considered, such as the Minimax solution (Brams, Kilgour, &
Sanver, 2007), Satisfaction Approval Voting (Brams & Kilgour, 2015), families of rules
based on Weighted Averaging Aggregation (Amanatidis, Barrot, Lang, Markakis, & Ries,
2015), Proportional Approval Voting and Chamberlin-Courant. The last two rules, as
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well as Minisum, can be captured by the general family of Thiele voting rules; for these
(and other approval based rules) we refer to the very recently published book (Lackner &
Skowron, 2023) and to the surveys (Brams & Fishburn, 2010; Kilgour, 2010). None of these
rules however allow voters to express dependencies. The first work that exclusively took
this direction for approval-based elections is by Barrot and Lang (2016). Namely, three
voting rules were proposed for incorporating such dependencies (including the Conditional
Minisum rule that we consider here) and some of their properties were studied, mainly on the
satisfiability of certain axioms. Conditional approval ballots have a clear resemblance with
the well-studied model of CP-nets (Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004),
which is a graphical representation of voters’ preferences depicting conditional dependence
and independence of preference statements under a ceteris paribus (all else being equal)
interpretation, but, as it has been highlighted in (Barrot & Lang, 2016) the two frameworks
define different semantics and are incomparable.

Even if one moves away from approval-based elections, the presence of preferential de-
pendencies remains a major challenge when voting over combinatorial domains. Several
methodologies have been considered achieving various levels of trade-offs between expres-
siveness and efficient computation. Some representative examples include, among others,
sequential voting (Lang & Xia, 2009; Airiau, Endriss, Grandi, Porello, & Uckelman, 2011;
Dalla Pozza, Pini, Rossi, & Venable, 2011; Xia & Conitzer, 2012), or completion principles
for partial preferences (Laffond & Lainé, 2009; Cuhadaroglu & Lainé, 2012). Analogous
attempts to increase the expressiveness of agents’ ballots have been also examined in other
subfields of computational social choice; indicatively we refer to Participatory Budgeting
(Rey, Endriss, & de Haan, 2023; Jain, Sornat, & Talmon, 2020), Judgement Aggregation
(Grandi & Endriss, 2010) and Liquid Democracy (Colley, Grandi, & Novaro, 2021).

Finally, in our work we also consider versions of election control that fall within the
standard approaches that have been used for studying the complexity of affecting election
outcomes. For an extensive study on this topic, we refer to (Faliszewski & Rothe, 2016).
Indicatively, the study of such problems with adding or deleting voters or alternatives began
with (Bartholdi III, Tovey, & Trick, 1992) and some subsequent works are (Gupta, Roy,
Saurabh, & Zehavi, 2022; Yang, 2019; Hemaspaandra, Hemaspaandra, & Rothe, 2007;
Faliszewski, Hemaspaandra, & Hemaspaandra, 2011; Liu, Feng, Zhu, & Luan, 2009; Meir,
Procaccia, Rosenschein, & Zohar, 2008).

2. Formal Background

Let I = {I1, . . . , Im} be a set of m issues, where each issue Ij is associated with a finite
domain Dj of alternatives. An outcome is an assignment of a value for every issue, and let
D = D1 ×D2 × · · · ×Dm be the set of all possible outcomes. Let also V = {1, . . . , n} be a
group of n voters who have to decide on a common outcome from D.

Voting Format. To express dependencies among issues, we mostly follow the format
described in (Barrot & Lang, 2016). Each voter i ∈ [n] is associated with a directed graph
Gi = (I, Ei), called dependency graph, whose vertex set coincides with the set of issues.
A directed edge (Ik, Ij) means that issue Ij is affected by Ik. We also let N −

i (Ij) be the
(possibly empty) set of direct predecessors of issue Ij in Gi. We first explain briefly how
the voters are expected to submit their preferences, before giving the formal definition.

5



For an issue Ij that has no predecessors in Gi (in other words, its in-degree is 0), voter
i is allowed to cast an unconditional approval ballot, stating the alternatives of Dj that
are approved by her. In the case that issue Ij has a positive in-degree in Gi, then let
{Ij1 , Ij2 , . . . , Ijk} ⊆ I be all its direct predecessors (also called in-neighbors). Voter i then
needs to specify all the combinations that she approves in the form {t : r} where r ∈ Dj , and
t ∈ Dj1 ×Dj2 × · · · ×Djk . Every such combination {t : r} signifies the satisfaction of voter
i with respect to issue Ij in a given outcome, when that outcome contains all alternatives
in t as well as the alternative r for the issue Ij . Both cases of zero and positive in-degree
for an issue can be unified in the following definition of conditional approval ballots.

Definition 1. A conditional approval ballot of a voter i over issues I = {I1, . . . , Im}
with domains D1, . . . , Dm respectively, is a pair Bi = ⟨Gi, {Aj , j ∈ [m]}⟩, where Gi is the
dependency graph of voter i, and for each issue Ij , Aj is a set of conditional approval
statements in the form {t : r} with t ∈

∏
k∈N−

i (Ij)
Dk, and r ∈ Dj .

To simplify the presentation, when a voter has expressed a common dependency for
k > 1 alternatives of an issue Ij , we can group them together and write {t : {d1j , d2j , . . . , dkj }},
instead of {t : d1j}, {t : d2j}, . . . , {t : dkj }. Additionally, for every issue Ij with in-degree 0
by some voter i, a vote in favor of dj will be written simply as {dj}, instead of {∅ : dj}.

An important quantity for parameterizing families of instances is the maximum in-
degree1 of each graph Gi, namely ∆i = maxj∈[m]{|N −

i (Ij)|}. Let also ∆ = maxi∈[n]∆i.

Given a voter i with conditional ballotBi, we will denote byBj
i the restriction of her ballot to

issue Ij . Moreover, a conditional approval voting profile is given by a tuple P = (I,D, V,B),
where B = (B1, B2, . . . , Bn).

Definition 2. The global dependency graph of a set of voters is the undirected simple
graph that emerges from ignoring the orientation of edges in the graph (I,

⋃
i∈[n]Ei), where

Ei is the edge set of the dependency graph of voter i.

Example 1. As an illustration, we consider 3 co-authors of some joint research who have
to decide on 3 issues: whether they will work more before the submission deadline on
obtaining new theorems, whether they have enough material to split their work into two,
or even multiple, papers or submit all their results in a single submission, and whether
they should invite a new co-author to work with them because of his insights that can help
on improving their results. The first author insists on more work before the submission,
additionally he approves the choice of two submissions if and only if they work more on new
theorems. Furthermore, he does not want to have a new co-author if and only if they split
their work. The second author does not have time for more work before the deadline, he
has no strong opinion on multiple submissions, approving both alternatives, and he agrees
with inviting a new co-author only if they decide both to work more for new results and to
submit a single paper. Finally, the last author is interested in working more and in splitting
their work and she does not have a strong opinion on whether she prefers to invite a new
co-author or not, unless they all decide not to work more neither to make more than a single
submission, in which case she disagrees with such an invitation.

1. When ∆i is large for some voter i, the input might become exponentially large. Alternatively, one could
try a succinct way of representing ballots using propositional formulae. We will not examine further this
issue, since for the cases that we consider, the in-degree is constant.
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More formally, let I = {I1, I2, I3} be the aforementioned issues where D1 = {w,w},
D2 = {m,m}, D3 = {c, c}. The dependency graphs and the voters’ preferences follow.

Figure 1: The dependency graph of voter 1 (up
left), voters 2 and 3 (down left) and the global
dependency graph (right).

voter 1 voter 2 voter 3

w {w,m,m} {w,m}
w : m wm : c wm : {c, c}
w : m wm : c wm : {c, c}
m : c wm : c wm : {c, c}
m : c wm : c wm : c

Figure 2: The conditional ballots of the voters.

Voting Rule. In this work, we study a generalization of the classic Minisum solution in
the context of conditional approval voting. To do so, we firstly define a measure for the
dissatisfaction of a voter given an assignment of values to all the issues, using the following
generalization of Hamming distance.

Definition 3. Given an outcome s = (s1, s2, . . . , sm) ∈ D, we say that voter i is dissatisfied
(or disagrees) with issue Ij , if for the projection of s on N −

i (Ij), say t, it holds that {t :

sj} /∈ Bj
i . We denote as δi(s) the total number of issues that dissatisfy voter i.

Coming back to Example 1, the values of δi(s) for every outcome s and voter i follow.

δi(·) wmc wmc wmc wmc wmc wmc wmc wmc

voter 1 1 0 1 2 3 2 1 2
voter 2 2 1 1 2 1 0 1 0
voter 3 0 0 1 1 1 1 3 2

The rule that our work deals with is Conditional Minisum (cms) and outputs the out-
come that minimizes the total number of disagreements over all voters. To simplify notation,
we will use cms to refer both to the voting rule and to the related algorithmic problem; the
exact meaning will always be clear from the context. Formally, the algorithmic problem
that we study is as follows.

conditional minisum (cms)

Given: A voting profile P with m issues and n voters casting condi-
tional approval ballots.

Output: A boolean assignment s∗ = (s∗1, . . . , s
∗
m) to all issues that

achieves mins∈D
∑

i∈[n] δi(s).

For Example 1, we can see that the Conditional Minisum solution would prescribe to
the authors to work more for new results, to split their work into two submissions, and not
to invite a new co-author, which corresponds to the outcome {wmc}.

If the global dependency graph of an instance is empty, i.e., ∆i = 0 for every voter i,
then the election degenerates to Unconditional Minisum which is simply the classic Minisum
rule in approval voting over multiple independent issues.
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Finally, in the sequel, we will extensively make use of the treewidth of a graph G, denoted
as tw(G). For the relevant definition, we refer to (Robertson & Seymour, 1986) or to any
textbook of parameterized complexity such as (Cygan, Fomin, Kowalik, Lokshtanov, Marx,
Pilipczuk, Pilipczuk, & Saurabh, 2015).

3. Winner Determination

In this section we focus on the winner determination problem, under the Conditional Min-
isum voting rule. In Section 3.1, we mainly present a characterization (subject to certain
complexity theory assumptions) of the instances which admit polynomial time algorithms
for computing the optimal outcome of the rule, whereas in Section 3.2, our focus is on
approximate solutions, for computationally more demanding instances.

3.1 Optimal Algorithms

The price we pay for the higher expressiveness of cms, compared to the classical Minisum
solution, is its increased complexity. Here, we focus on understanding the properties that
allow cms to be implemented in polynomial time. For this, we firstly stick to the case where
∆i ≤ 1 for every voter i, which is already NP-hard, and at the same time forms the most
obvious, first-step generalization of Unconditional Minisum to the setting of dependencies.
Then, in Section 3.1.1, we generalize our results for profiles of bounded ∆i, for every voter
i. To investigate what further restrictions can make the problem tractable, we utilize the
global dependency graph of an instance, defined in Section 2, as the aggregation of all the
dependencies of the voters into a single graph. To see how to exploit the global dependency
graph, it is instructive to inspect the NP-hardness proof for cms in (Barrot & Lang, 2016),
which holds for instances where ∆i = 1 for every voter i, and each dependency graph is
acyclic. Examining the profiles created in that reduction, we notice that no restrictions
can be stated for the form of the global dependency graph corresponding to the produced
instances. This holds since, an acyclic dependency graph for every voter does not necessarily
lead to an acyclic global dependency graph and furthermore, the bounded in-degree in each
Gi, does not imply a constant upper bound for the maximum in-degree of the global graph.

Our insight is that it may not be only the structure of each voter’s dependency graph
that causes the problem’s hardness, but in addition, the absence of any structural property
on the global dependency graph. Motivated by this, we investigate conditions for the global
dependency graph, that enable us to obtain the optimal solution in polynomial time. Our
findings reveal that this is indeed feasible for the classes of graphs with constant treewidth.

In our results, we make extensive use of Constraint Satisfaction Problems (csps). A
csp instance is described by a tuple (V,D,C), where V is the set of variables, D is the
Cartesian product of the domains of the variables, and C is a set of constraints. Each
constraint involves a subset of the variables, and is represented by all the combinations of
variables that make it satisfied. We will pay particular attention to the so-called binary
csps, where each constraint involves at most two variables. The decision problem for a
csp asks whether we can find an assignment to the variables of V so that all constraints
of C are satisfied, whereas a natural optimization version (Freuder & Wallace, 1992) is to
minimize the number of unsatisfied constraints. When analyzing csps, a useful concept in
the literature is the primal or Gaifman graph of an instance, defined below.
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Definition 4. The primal (or Gaifman) graph of a csp instance is an undirected graph,
whose vertices are the variables of the instance and there is an edge between two vertices,
if and only if they co-appear in at least one constraint.

The proof of the following theorem is based on formulating our problem as minimizing
the number of unsatisfied constraints in an appropriate binary csp instance, whose primal
graph has constant treewidth. For these classes of csps, one can then use known results
from (Freuder, 1990) or (Koster, van Hoesel, & Kolen, 2002) for solving them efficiently.

Theorem 1. If the global dependency graph of a cms instance with ∆i ≤ 1, for every voter
i, has constant treewidth, then cms can be implemented in polynomial time, even with an
arbitrary domain cardinality for each issue.

Proof. Consider an instance P = (I,D, V,B) of cms with n voters and m issues, and let
G be its global dependency graph. Suppose the treewidth of G is bounded by k ∈ O(1),
and let d be the maximum cardinality among the domains. We form an instance of the
minimization version of binary csp, with m ·n constraints, where each constraint expresses
the satisfaction of a specific voter for a specific issue.

Recall that we have assumed the maximum in-degree of every voter’s dependency graph
is at most one, thus each constraint in the csp instance that we construct involves at most
two variables, which means that the obtained csp is indeed binary. Also, we can express
each constraint by providing at most d2 combinations of the two involved variables (i.e., the
combinations that satisfy the constraint). Hence, the construction of the csp instance can
be done in polynomial time.

Since each constraint that involves two variables2 corresponds to an edge of the global
dependency graph and constraints with exactly one variable do not contribute any edges
neither to the primal nor to the global dependency graph, the following can be easily verified.

Claim 1. The primal graph of the produced csp instance is identical to the global depen-
dency graph of the cms instance.

Therefore, cms has been formulated as minimizing the number of unsatisfied constraints
in a binary csp with primal graph of constant treewidth and these classes of CSPs are
solvable in O(nk) time by (Freuder, 1990)3 or (Koster et al., 2002).

We additionally highlight that the above theorem can be generalized when there is a
weight wi for each voter i so that the objective becomes the weighted sum of the dissatis-
faction scores.

In trying to move away from treewidth-based assumptions, a natural question is whether
we can solve other classes of instances, containing graphs of non-constant treewidth, by
focusing on other parameters of the problem. Quite surprisingly, it turns out that bounded
treewidth is essentially the only property that can yield efficiency guarantees. To establish
this claim, we will first show a “reverse” direction to Theorem 1, namely that binary csps

2. For uniformity, we could add dummy issues in the cms instance (resp. dummy variables in the csp
instance) so that the final csp only has constraints with exactly two variables.

3. In fact, the original results in (Freuder, 1990) do not deal with the optimization version, but as demon-
strated in later works (see e.g., Proposition 4.3 from (Knop, Koutecký, Masaŕık, & Toufar, 2019), it can
be extended for this version as well.
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can be reduced to solving cms. Hence, together with Theorem 1, this means that cms is
computationally equivalent to binary csps, and thus to any other problem for which the
same result has been already established, e.g., the partitioned subgraph isomorphism
problem (Marx, 2010).

Theorem 2. Every binary CSP with primal graph G, can be reduced in polynomial time to
a cms instance with ∆i ≤ 1 for every voter i, and with G as the global dependency graph.

Proof. For convenience, we will work with the standard decision version of csp where one
asks if there is a solution that satisfies all the constraints.

Let P be a binary csp instance, and without loss of generality, assume that every
constraint involves exactly two variables (which can be enforced by the addition of dummy
variables). We construct a cms instance P ′, where the issues correspond to the variables
and the voters correspond to the constraints of P . In particular, for every variable xj of the
csp instance, we add an issue Ij and for every constraint we add a voter, with the following
preferences: let xj , xk be the two variables involved in the constraint. We pick one of the
two variables (arbitrarily), say xk, and we set Ik as the issue that the voter cares about,
conditioned on Ij . We also set her conditional ballot for issue Ik in such a way, so that the
voter becomes satisfied precisely for all combinations of values for xj and xk that make the
constraint satisfied. The voter is also satisfied unconditionally with every outcome for every
other issue of the produced instance. Obviously, the dependency graph of every voter has
maximum in-degree equal to one.

As an example, suppose that a constraint is of the form x1 ∨ x2 and the variables x1, x2
have binary domain. Then we introduce a new voter, and two issues, I1, I2 (the issues may
have been introduced already by other constraints in the instance), and we can select I2 as
being dependent on I1. The conditional ballot regarding the satisfaction of the voter for I2
is {x1 : x2}, {x1 : x2}, {x1 : x2}. In addition, the voter has an unconditional ballot for I1,
in the form {x1, x1}, thus approving every value for I1.

To complete the reduction, we consider the decision version of cms where we ask if there
is an assignment with no dissatisfactions, i.e., the instance P ′ has an affirmative solution
only when all voters are satisfied with all the issues. It is obvious that this is a polynomial
time reduction (the conditional ballot of each voter for her single issue of interest can be
described in O(d2) time, where d is the maximum domain cardinality of the csp variables).
It is quite obvious also that every edge from the primal graph of P corresponds to an edge
in the global dependency graph of P ′, and vice versa. Hence:

Claim 2. The primal graph of csp instance P is identical to the global dependency graph
of the cms instance P ′.

Finally, it remains to see that there exists a solution to P ′ if and only if there exists
a solution to P . Indeed, any solution to P ′ corresponds to an assignment of values to the
issues such that all voters are satisfied with all issues, which means that all the constraints
of the csp instance P are satisfied. The converse is also easily verified.

Theorem 2 allows us to apply some well known hardness results on binary csps, namely
(Grohe, 2007; Grohe, Schwentick, & Segoufin, 2001), which imply that one cannot hope
to have an efficient algorithm for a class of cms instances, if the class contains instances
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with non-constant treewidth. Hence, Theorem 1 is essentially tight, and this resolves the
problem of finding a characterization for polynomial time solvability of cms, subject to a
standard complexity theory assumption. This is summarized in the following corollary.

Corollary 1 (implied by Theorems 1 and 2 and by (Grohe, 2007)). Let G be a recursively
enumerable (e.g., decidable) class of graphs, and let cms(G) be the class of instances with
a global dependency graph that belongs to G, and with ∆i ≤ 1 for every voter i. Assuming
FPT ̸= W[1], there is a polynomial algorithm for cms(G) if and only if every graph in G
has constant treewidth.

Proof. If G is a class of graphs, as in the statement, then by Theorem 2, an algorithm for the
class of cms instances whose global dependency graph belongs to G implies an algorithm
for the csp instances whose primal graph belongs to G. The proof can now be completed
by applying the hardness results for binary csps by (Grohe, 2007; Grohe et al., 2001).

Remark 1. If we strengthen the complexity assumption used in Corollary 1, from FPT ̸=
W[1] to the Exponential Time Hypothesis (ETH), we can obtain an even stronger impossi-
bility. In particular, by exploiting the result of (Marx, 2010), and the proof of Theorem 2,
we can show that under ETH, one cannot even hope for an algorithm on cms(G) that runs
in time f(G)||P ||o(tw(G))/log(tw(G)), where ||P || is the size of the cms instance and G ∈ G.
This implies that the running time O(ntw(G)) of the algorithm from Theorem 1 is the best
possible up to an O(log (tw(G))) factor in the exponent.

3.1.1 Generalizations to higher in-degrees

We highlight that Theorem 1 cannot be immediately generalized so as to apply to instances
where ∆i ≥ 2 for some voter i, since in that case the global dependency graph will not
necessarily coincide with the primal graph of the corresponding csp that we constructed in
the proof of Theorem 1 (which is an essential part of the proof). In order to obtain a result
for higher in-degrees, we introduce the following definition, which is a generalization of the
global dependency graph, and where we simply replace a vertex and its in-neighbors by a
clique on the same set of vertices.

Definition 5. The extended global dependency graph of a set of voters is the undirected
(simple) graph (I,

⋃
i∈[n] Ẽi), where Ẽi is the edge set of a graph that corresponds to voter

i and is created by enforcing an undirected clique for every issue Ij and any voter i, on the
set N −

i (Ij) ∪ {Ij}.

Note that for the cases that ∆ ≤ 1, the extended global dependency graph of an instance
coincides with the global dependency graph (and hence with the primal graph created in
the proof of Theorem 1). The crucial observation now is that as long as ∆ ∈ O(1), an
instance of csp equivalent to the initial cms instance, can be created in polynomial time
by following very closely the proof of Theorem 1. And most importantly, even though the
extended global dependency graph of the cms instance does not coincide with the global
dependency graph, it does coincide with the primal graph of the created csp instance, which
is all we need. We stress also that one of the reasons we need ∆ ∈ O(1), is to ensure that
we can specify all the combinations that satisfy a constraint in polynomial time (namely by
specifying the at most d∆ satisfying combinations).
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To finalize the argument for the generalization, note that the created csp instance will
no longer be a binary csp (i.e., it will not have at most two variables in each constraint).
Nevertheless, these instances will have at most a constant number of variables in each
constraint, due to ∆ being constant, and they are still tractable as long as the primal
graph of the csp has bounded treewidth (Freuder, 1990). Hence, our discussion can be
summarized by the following theorem, which is indeed a generalization of Theorem 1 for
instances of higher in-degrees.

Theorem 3. If the extended global dependency graph of a cms instance with ∆i ∈ O(1)
for every voter i, has constant treewidth, then cms can be implemented in polynomial time,
even with an arbitrary domain cardinality for each issue.

Finally, we can also obtain a generalization of Theorem 2 (the exact same arguments
apply with the global dependency graph being replaced by the extended global dependency
graph). This leads to the following characterization regarding instances with higher in-
degrees, which is the analog of Corollary 1.

Corollary 2. Let G be a recursively enumerable class of graphs, and let cms(G) be the class
of instances with an extended global dependency graph that belongs to G, and with ∆i ∈ O(1)
for every voter i. Assuming FPT ̸= W[1], there is a polynomial algorithm for cms(G) if
and only if every graph in G has constant treewidth.

We finally note that Remark 1 also applies here, but again for the treewidth of the
extended global dependency graph.

3.1.2 Parameterized complexity of cms

The algorithm used in the proof of Theorem 1, runs in time exponential in tw(G), where G
is the global dependency graph and thus it places cms in XP w.r.t the treewidth parameter.
One can wonder if anything more can be said concerning the fixed parameter tractability
of the problem. Given the equivalence of our problem for ∆i ≤ 1, for every voter i, with
binary csp, we can use existing results (Samer & Szeider, 2010; Gottlob & Szeider, 2008) to
extract some further characterizations and obtain an almost complete picture with respect
to the most relevant parameters. On the positive side, we can see that our problem is in
FPT with respect to the parameter “treewidth + domain size”. On the negative side, we
cannot hope to prove FPT only w.r.t the one of the two parameters, independent of the
other, as stated below.

Corollary 3. When ∆i ∈ O(1) for every voter i, cms is in FPT w.r.t the parameter tw+d,
where tw is the treewidth of the extended global dependency graph and d is the maximum
domain size. Moreover, even when ∆i ≤ 1 for every voter i, it is W [1]-hard with respect to
tw and with respect to d.

Proof. First, let us introduce some notation for ease of presentation. Given a set of parame-
ters S, we denote as Π{S} the parameterized version of a problem Π, having all variables in
S as parameters. Π{S} is in FPT if every instance I of Π can be solved in time O(f(S)|I|c)
for some constant c, and a computable function f , independent of any variable of Π other
than the parameters in S. For a csp instance we will denote by tw′ the treewidth of its
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primal graph, by d′ the maximum domain size of every variable, and by arity the maximum
number of variables that co-appear in a constraint.

To prove the positive statement, we exploit the fact that csp{arity, d′, tw′} is in FPT
by (Grohe et al., 2001). This trivially implies that for csp instances of constant arity, we
have that csp{d′, tw′} is in FPT. We can now use our Theorem 3. In particular, if we have
a cms instance, where ∆i ∈ O(1), and where d is the maximum domain size and tw is the
treewidth of the extended global dependency graph, Theorem 3 shows that we can reduce
this to solving a csp instance of constant arity and with d′ = d and tw′ = tw. Hence, we
have that cms{tw, d} is in FPT, when ∆i ∈ O(1).

To prove the negative statements, we use the following definition: A set of parameters
S dominates a set S′ if whenever all parameters of S′ are bounded by some constants, all
parameters of S are bounded too. In (Samer & Szeider, 2010) (Theorem 1 therein), it was
proved that cspbin{arity, tw′} and cspbin{arity, d′} are W[1]-hard, where cspbin denotes
the class of binary csp instances. It is trivial to see that the set S = {tw′} dominates the
set S′ = {arity, tw′}. Hence, by utilizing Lemma 1 in (Samer & Szeider, 2010), we obtain
that cspbin{tw′} is W [1]-hard and the same is true also for cspbin{d′}. Given the reduction
established in our Theorem 2, of binary csps with parameters tw′ and d′ to cms instances
with ∆i ≤ 1 and with tw = tw′ and d = d′, we can conclude that both cms{tw} and cms{d}
are W[1]-hard too.

We conclude the subsection by noting that the instances captured by the assumptions we
have made are indeed meaningful in multi-issue elections with logically dependent issues.
Firstly, we mostly considered instances where ∆i ≤ 1 for every voter i, which is non-
trivial (NP-hard to solve the winner determination problem), but still the obvious first-step
generalization of the traditional (minisum) approval voting rule. Secondly, the main positive
result was for the case where the global dependency graph has a bounded treewidth. This
can allow e.g., for paths, where we could think of the issues as being ordered on a line, with
a sequential dependence between them. Likewise, when the global dependency graph forms
a tree, we can again have a hierarchy regarding dependencies (e.g., a star graph can arise
when there is a central issue, the decision for which influences the satisfaction of voters on
the remaining issues). Going further, a constant treewidth allows for even more complex
dependencies among issues, but still well-structured.

3.2 Approximation Algorithms

It is well known that a Minisum solution can be efficiently computed when there are no
dependencies (Brams et al., 2007). In contrast to this, cms is NP-hard even when all the
issues have a binary domain and there is only a single dependence per voter, i.e., when
every voter’s dependency graph has just a single edge (Barrot & Lang, 2016). Given this
hardness result, it is natural to resort to the framework of approximation algorithms. The
only known result from this perspective is an algorithm by (Barrot & Lang, 2016), with a
differential approximation ratio of 4.34/(m

∑
j∈I 2

|N−(j)| + 4.34), for the case of a common
acyclic dependency graph, where N −(j) is the set of common in-neighbors of issue j (for
each voter i and issue j, N −

i (j) = N −(j)). However, differential approximations (we refer
to (Demange, Grisoni, & Paschos, 1998) for the definition of this concept) form a less
typical approach in the field of approximation algorithms. Instead, we focus on the more
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standard framework of multiplicative approximation algorithms, as treated also in common
textbooks (Vazirani, 2003; Williamson & Shmoys, 2011). We say that an algorithm for a
minimization problem achieves a multiplicative ratio of α ≥ 1, if for every instance I, it
produces a solution with cost at most α times the optimal. We stress that a differential
approximation ratio for minimization problems does not in general imply any multiplicative
approximation ratio (Bazgan & Paschos, 2003).

We start first with a rather strong negative result in terms of the viability of approximate
solutions. The main result of the previous subsection was the hardness of computing optimal
outcomes, which is implied by Theorem 2. In fact, the proof of Theorem 2 implies also the
following important multiplicative inapproximability about cms.

Corollary 4. Even when ∆i ≤ 1 for every voter i, it is NP-hard to obtain any finite
approximation ratio for cms.

Proof. If we look again at the proof of Theorem 2, we can see that we have reduced the
solution of a binary csp instance to deciding whether a cms instance admits a solution
of cost zero, i.e., a solution where all voters are satisfied. Given the hardness of binary
csps, we conclude then that deciding if a cms instance has optimal cost equal to zero is
NP-hard. Suppose now that we could obtain an approximation algorithm with some finite
approximation ratio for every instance. This immediately means that we could use this
algorithm to distinguish between instances that have an optimal cost of zero (where the
algorithm would have to return the optimal solution by the definition of approximation
ratio) from the remaining instances (where the algorithm would return some solution with
a positive cost). Hence we would have solved an NP-hard problem.

Therefore, a polynomial time algorithm with a bounded multiplicative approximation
guarantee, could only be possible under further assumptions. Our main contribution in
this subsection is the first class of multiplicative approximation algorithms for some special
cases of cms. Sticking to the already hard class of binary domains and ∆i ≤ 1, for every
voter i (which includes the instances in which every voter has one edge, considered in the
hardness result of (Barrot & Lang, 2016)), we focus on instances that satisfy an assumption
motivated by the fact that in the unconditional case, allowing voters to approve at most a
single alternative per issue is already an interesting and well-studied voting scenario, which
corresponds to the multi-issue analog of elections under the classical plurality setting.

Definition 6. Consider a cms instance with binary domains, and where the dependency
graph of every voter i satisfies ∆i ≤ 1. The instance is called 1-approval, if for every issue Ij
that is dependent on some issue Ik according to the preferences of a voter i, it holds that i
can be satisfied only with one pair, say {xk : xj}, w.r.t. Ij , where xk ∈ Dk and xj ∈ Dj . No
restrictions are imposed to the number of approved alternatives for unconditional ballots.

To obtain a positive result, we first make use of known approximation algorithms for
min k-sat, a minimization version of sat, where we are given a set of m clauses in k-CNF
and we search for a boolean assignment so as to minimize the total number of satisfied
clauses. Interestingly, minimization versions of sat have rarely been applied in the context
of computational social choice, see e.g., (Lang, Mengin, & Xia, 2018). In fact it has hardly
ever been used as a tool for obtaining approximation algorithms for other problems (we are
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only aware of an application for certain string comparison problems (Goldstein, Kolman, &
Zheng, 2005)). The use of max sat is much more common, but for the case of cms, and for
multiplicative approximation guarantees, it does not seem convenient to exploit algorithms
for maximisation problems. In a nutshell, if we use an approximation algorithm for max
sat, the conversion from the solution of a maximization problem to that of a minimization
one that we have here, does not preserve a good approximation ratio for our objective
function4. The main positive result of this subsection follows.

Theorem 4. Let F be the family of 1-approval cms instances, with binary domains and
with ∆i ≤ 1 for every voter i. Then any α-approximation algorithm for min 2-sat yields
an α-approximation algorithm for the family F . In particular, we can have a polynomial
time 1.1037-approximation for any cms instance in F .

Proof. We present a reduction to min 2-sat that preserves the approximation factor in the
case where the given cms instance is 1-approval. We first present a general reduction for
any instance with ∆i ≤ 1 for every voter i, which could be of broader interest. Later on, we
will see how we can exploit this construction for 1-approval instances. Therefore, consider
an arbitrary instance P of n voters, with ∆i ≤ 1 for every voter i, and let I = {I1, . . . , Im}
be the set of issues. We first create a logical formula Cij , for every voter i ∈ V , and every
issue Ij ∈ I, which indicates the cases where voter i is not satisfied with the outcome on Ij .
For every issue Ij , recall that Dj = {dj , dj} is its domain, and xj will be the corresponding
boolean variable in the construction of Cij .

For this we consider two cases. The first and easier case is when for a voter i, and issue
Ij , N

−
i (Ij) = ∅. All possible forms of Bj

i are depicted in the first row of Table 1, whereas
the corresponding formula is shown in the second row.

Bj
i ∅ {dj} {dj} {dj , dj}

Cij xj ∨ xj xj xj ∅

Table 1: The formula when issue Ij has no predecessor in Gi.

On the other hand, if Ij has an in-neighbor (it can have only one by our assumptions),
say Ik ∈ I, we set Cij equal to the disjunction of all combinations of outcomes on issues Ij
and Ik that dissatisfy voter i with respect to Ij . To illustrate this construction, we describe
an example with 4 voters, 2 issues I = {Ik, Ij} and for every voter i, Gi = {I, {Ik, Ij}}.
The preferences for issue Ij are shown in Table 2. Namely, for i = 1, 2, 3, 4, the first cell

in the i-th row depicts Bj
i from which Cij can be obtained as the disjunction of the ticked

expressions in the remaining of the i-th row.

Claim 3. For an outcome (s1, . . . , sm) of the issues and the corresponding assignment to
the boolean variables x1, . . . , xm, voter i is dissatisfied with Ij if and only if the formula Cij

is true.

The constructed formula Cij is in DNF. To continue, we will need to make a conversion
to CNF, which is easy to do given its small size as per the following lemma.

4. The differential approximation result of (Barrot & Lang, 2016) was based on the use of max sat. But
as stated earlier, this does not imply any non-trivial multiplicative approximation for cms.
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Bj
i

(xk ∧ xj) (xk ∧ xj) (xk ∧ xj) (xk ∧ xj)

∅ ✓ ✓ ✓ ✓
{dk : dj} ✓ ✓ ✓
{dk : dj},
{dk : dj}

✓ ✓

{dk : dj},
{dk : dj},{dk : dj}

✓

Table 2: For i = 1, 2, 3, 4 the formula Cij is the disjunction of the ticked expressions in the i-th row.

Lemma 5. The formula Cij for each voter i ∈ V , and each issue Ij ∈ I, can be written in
CNF with at most 2 clauses, and where each clause contains at most 2 literals.

Proof of Lemma 5. Fix a voter i and an issue Ij . For the cases where issue Ij has no in-
neighbor in Gi, the lemma obviously holds, as can be verified in Table 1. For all other
cases, Ij has a unique in-neighbor, say issue Ik, since we are dealing with instances where
the in-degree is at most one. We now need to examine the form of Cij for the cases that
arise.

Case A. If voter i is satisfied only with 1 out of the 4 possible outcomes regarding Ij and
Ik, then Cij is a disjunction of 3 conjunctions. Let us assume that Cij is in the form:
(xj ∧ xk)∨ (xj ∧ xk)∨ (xj ∧ xk). All other cases are handled in exactly the same way.
The following equivalences can bring Cij to the desirable form.

(xj ∧ xk) ∨ (xj ∧ xk) ∨ (xj ∧ xk) ≡ xk ∨ (xj ∧ xk) ≡
(xk ∨ xj) ∧ (xk ∨ xk) ≡ xk ∨ xj

Case B. If voter i is satisfied with 2 out of the 4 possible outcomes, then Cij is a disjunction
of 2 conjunctions. Without loss of generality, we can assume we have one of the
following cases (all remaining cases can also be brought to one of these formats). As
verified below, by the right hand side of each term, all cases can be brought into the
desirable form.

(1.) (xj ∧ xk) ∨ (xj ∧ xk) ≡ (xj ∨ xk) ∧ (xj ∨ xk)

(2.) (xj ∧ xk) ∨ (xj ∧ xk) ≡ (xj ∨ xk) ∧ (xj ∨ xk)

Case C. If voter i is satisfied with 3 out of the 4 possible outcomes regarding Ij and Ik, then
we simply take the conjunction expressing the outcome that causes dissatisfaction.
E.g., Cij = xk ∧ xj , when i is satisfied with everything apart from {dk : dj}. Thus,
Cij has 2 clauses with 1 literal each.

Note that, typically, according to the definition of the conditional approval framework,
a voter could also be satisfied with all 4 possible outcomes of Ij and Ik or disagree with all
possible outcomes. However, one can consider such ballots as simple unconditional ballots,
as no real dependence between the issues exists.
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Using Lemma 5 to convert each Cij to CNF, we can now create a min 2-sat instance
P ′ by the multiset5 of all clauses appearing in the Cij ’s, i.e., appearing in the formula

C =
∧

i∈V,Ij∈I
Cij . (1)

We now try to exploit how the analysis so far can help us for 1-approval instances. We
will first need to compare the optimal solution of the cms instance with the optimal solution
of the corresponding min 2-sat instance.

Lemma 6. Let P be a cms instance and P ′ be its corresponding min 2-sat instance
produced as discussed in the proof of Theorem 4. Let also OPT(P ) and OPT(P ′) be the
values of the optimal solutions of the instances. If P is 1-approval, then it holds that
OPT(P ′) = OPT(P ).

Proof of Lemma 6. Consider an optimal solution of the cms instance P . Every voter con-
tributes to the cost of this solution precisely the number of issues with which she is dis-
satisfied. Consider now the corresponding min 2-sat instance P ′, formed by the clauses
of the constructed formula C from Equation (1). Let us look at the truth assignment to
the variables of C, as dictated by the values of the issues in the optimal solution of P .
We will provide an upper bound on the number of satisfied clauses of C. Under this truth
assignment, it holds that for every voter i and for every issue Ij for which i is dissatisfied
with respect to Ij , the formula Cij is true. By Lemma 5, any Cij has at most two clauses
which could be satisfied when Cij is true. But in the case when P is 1-approval, then any
fixed voter i either votes unconditionally on Ij or her ballot belongs to Case A from the
proof of Lemma 5. In both cases, Cij is formed by a single clause. Hence, by looking at all
the clauses of C that come from combinations (i, j), for which voter i is dissatisfied with
respect to issue Ij , we get a number of satisfied clauses equal to OPT(P ). Let us focus now
on pairs (i, j), for which voter i is satisfied with respect to Ij . Then, the corresponding
formula Cij is false. If the ballot of voter i with respect to Ij is unconditional or if her ballot
corresponds to Case A of Lemma 5, then Cij does not have any true clauses. Therefore, for
1-approval instances, OPT(P ′), which is the total number of satisfied clauses of C under
the selected truth assignment, equals OPT(P ).

Our construction gives rise to the following algorithm for cms, under the discussed
assumptions:

Algorithm 1 ▷Input: 1-approval profile P

1: Create P ′ from P using Lemma 5 and Equation (1).
2: Run an α-approximation of min 2-sat on P ′.
3: Set the value of Ij in P to the value of xj in P ′.

To conclude the proof of Theorem 4, let SOL(P ′) be the cost of the solution to P ′

produced in step 2 of Algorithm 1, which equals the number of satisfied clauses in C by

5. Some clauses may happen to appear more than once in the final formula but there is no harm in keeping
such duplicates.
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the truth assignment of the α-approximation algorithm. This corresponds to a solution for
cms and let SOL(P ) be its total cost. We note that the total number of distinct pairs (i, j)
for which voter i is dissatisfied by issue Ij can be no more than the number of the satisfied
clauses of C, since each Cij corresponds to a pair of a voter and an issue. Hence, together
with Lemma 6, we have the following implications:

SOL(P ) ≤ SOL(P ′) ≤ α ·OPT(P ′) = α ·OPT(P )

Thus, every α-approximation algorithm for min 2-sat yields an α-approximation for
cms, as long as P is 1-approval. To obtain the claimed approximation ratio, we use the
algorithm for min 2-sat from (Avidor & Zwick, 2005), which achieves a factor of 1.1037.

Remark 2. The proof of Theorem 4 also reveals why we cannot extend it to have a constant
approximation for other than 1-approval instances. In particular, for instances that involve
the Cases B and C, described in the proof of Lemma 5, we cannot guarantee that Lemma
6 will hold (all we need is that OPT (P ′) ≤ OPT (P ), but this could be far from true).

Although we have not been able to obtain a constant factor approximation for any other
instance of cms, the proof of Theorem 4 motivates the study of two more special cases of
interest, for which we can obtain a positive result via different procedures. The central
idea is that the general construction presented in Lemma 5 identifies 2 more cases, other
than 1-approval, that may occur regarding the satisfaction of a voter w.r.t. an issue. These
are precisely the Cases B and C in the proof of Lemma 5. To define these two cases more
formally, once again, we consider instances with binary domains, and with ∆i ≤ 1 for every
voter i. We will provide positive results for the families of instances that will be called OR-
instances and XOR-instances. The former family could be seen as a generalized variant of
antiplurality instances (a.k.a. veto, see e.g. (Brandt, Conitzer, Endriss, Lang, & Procaccia,
2016) for more details); it contains instances in which every voter who casts a ballot for an
issue Ij that is conditioned on the outcome of an issue Ik, approves exactly three out of the
four possible combinations for these issues, or equivalently, is dissatisfied only with a single
combination (the reason behind the name of this family will become clear when inspecting
the proof of the approximate result that follows). The latter, includes instances in which
for every issue Ij that is dependent on an issue Ik according to the preferences of a voter i,
we assume that these issues are of a complementary nature, i.e., that voter i either wants
Ij to be set to the same value as Ik or to the opposite (but not both). In other words, the
satisfaction of the voter depends on the XOR value between Ij and Ik. In both families, we
impose no restrictions for the issues that have no dependence on other issues. The formal
definitions of the instances that we are going to examine follow.

Definition 7. We say that a cms instance where the issues are binary and the dependency
graph of every voter i satisfies ∆i ≤ 1 is an OR-instance if every voter who casts a ballot
on an issue Ij that is conditioned on the outcome of an issue Ik is approving all but one
combinations {xk : xj}, where xℓ ∈ {dℓ, dℓ}, for ℓ ∈ {k, j}.

Definition 8. We say that a cms instance where the issues are binary and the dependency
graph of every voter i satisfies ∆i ≤ 1 is a XOR-instance if every voter who casts a ballot
on an issue Ij that is conditioned on the outcome of an issue Ik, is voting either for {dk :
dj , dk : dj} or for {dk : dj , dk : dj}.
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In contrast to the proof of Theorem 4, we are now going to reduce to and use algorithms
for the min-2-cnf-deletion problem for OR-instances and the min-uncut problem for
XOR-instances. Likewise in (Agarwal, Charikar, Makarychev, & Makarychev, 2005), we are
going to define these problems in a unified and convenient to us formulation, and we will
consider them as special cases of the constraint satisfaction problem (csp) which
also appeared in Section 3.1. Say that we are given a set of boolean variables b1, . . . , bn
and a set of constraints C and the goal is to find an assignment that minimizes the number
of unsatisfied constraints. The min-2-cnf-deletion problem is the special case of con-
straint satisfaction problem in which each constraint can be written in a 2-CNF form.
More precisely we will focus on instances in which each constraint corresponds to a single
clause in 2-CNF form, which has been called 2-cnf clause-deletion problem in the lit-
erature (Klein, Plotkin, Rao, & Tardos, 1997). The min-uncut problem is the special case
of constraint satisfaction problem in which each constraint is of the form bi⊕ bj = 0
or bi ⊕ bj = 1 and has also been called 2-cnf≡ deletion in the literature (Garg, Vazirani,
& Yannakakis, 1996).

Theorem 7. Let F be the family of cms instances where the issues are binary and the
dependency graph of every voter i satisfies ∆i ≤ 1. If F only contains XOR-instances
(resp. OR-instances), then any α-approximation algorithm for min-uncut (resp. 2-cnf
clause-deletion) yields an α-approximation algorithm for the family F . In particular,
we can have a polynomial time logm-approximation for the class of XOR-instances and a
polynomial time logm log logm-approximation for the class of OR-instances.

Proof. We start by proving the statement for XOR-instances. The result follows from an
approximation preserving reduction of an instance P ∈ F to an instance P ′ of min-uncut.
This reduction is similar to the one presented in the proof of Theorem 4 but, in this case, the
satisfaction of a voter with respect to an issue should correspond to a satisfied constraint.
Consider a voter i of P that has an unconditional ballot with respect to an issue Ij , say
in favor of the alternative xj ∈ Dj (resp. xj ∈ Dj), then, her preference can be simply
expressed as xj ⊕ 0 = 1 (resp. xj ⊕ 1 = 1). On the other hand, if the voter’s ballot on
Ij is conditioned on the outcome of Ik, due to the fact that P is a XOR-instance, her
preferences can be expressed as xj ⊕ xk = 0 or xj ⊕ xk = 1. We have now created an
instance P ′ of min-uncut, and, in analogy to the proof of Theorem 4, one can show that
the costs of the optimal solutions of the two instances coincide. Similarly, it also holds
that SOL(P ) = SOL(P ′), where SOL(P ′) corresponds to the cost of the solution of an
α-approximation algorithm for min-uncut, whereas SOL(P ) corresponds to the cost of the
solution of the algorithm that transforms any XOR-instance P of cms to an instance P ′

of min-uncut, as previously described, and then uses an α-approximation algorithm for
min-uncut on P ′. Utilizing the log n approximation from (Garg et al., 1996) (Section 8
therein) for min-uncut, where n is the number of variables in the instance, we obtain a
logm approximation for cms, under the discussed assumptions.

When it comes to OR-instances, it suffices to observe that a voter that casts a conditional
ballot in such an instance could express his preference with a logical formula that is of
the following form: (xj ∧ xk) ∨ (xj ∧ xk) ∨ (xj ∧ xk), for some xj ∈ {dj , dj} and xk ∈
{dk, dk}. But such an expression can be equivalently written as xk ∨ (xj ∧ xk) which,
in turn, is equivalent to xk ∨ xj , which can be seen as a constraint that is formed by
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a single clause in 2-CNF form. The rest of the arguments are identical to the case of
XOR-instances and the approximation factor follows from (Klein et al., 1997) (Section 3.3
therein), where a log k log log k approximation algorithm is presented for the 2-cnf clause-
deletion problem, where k is the number of variables in the given formula.

We note that slightly better approximation factors are possible for cms, under both
assumptions, leveraging results from (Agarwal et al., 2005). However, this comes with
the caveat of introducing randomization techniques, a debatable aspect in the context of
social choice settings. Concluding this section, we highlight the attainment of a bounded
approximation guarantee for every conceivable scenario, for the cases where all voters that
are casting conditional ballots approve either one, two, or three combinations of values.
Therefore, we have achieved positive results across the spectrum, albeit exclusively under
the assumption that voters are required to approve the same number of combinations per
conditional issue.

4. Strategic Control of CMS Elections

In this section, we consider strategic aspects of cms and study questions related to con-
trolling an election of interdependent issues, which falls under the broad and well studied
umbrella of influencing election outcomes. Suppose that there is an external agent (called
controller) who has a strong preference for a specific value of some (or every) issue in a
cms election. One of the instruments for enforcing a desirable value for the issue(s) the
controller cares about, is by enabling new voters to participate or by disabling some existing
voters, which can be done for example by changing the criteria for eligibility of voters. Fur-
thermore, a controller could add more choices for the issues under consideration or delete
existing ones, towards enforcing her will. We refer to (Chen, Faliszewski, Niedermeier, &
Talmon, 2017) for related examples and further motivation. Finally, it is reasonable to
assume that the controller does not have unlimited power, and therefore, she is capable of
adding or deleting only a certain number of voters or alternatives.

Each combination of control features (i.e., addition vs deletion, voters vs alternatives,
single issue vs multiple issues) gives rise to a different control type, namely control either all
or a single issue by deleting voters (cdv), by adding voters (cav), by deleting alternatives
(cda), or by adding alternatives (caa). In this manner, we obtain 8 distinct algorithmic
problems. Following the terminology of (Hemaspaandra et al., 2007), we say that a voting
rule is vulnerable to a certain control type, if the corresponding problem is always solvable
in polynomial time. If the problem is C-hard for a complexity class C, we consider the rule to
be resistant6 to the specific control type (typically C is the class NP). In the cases where it is
not possible for a controller to affect the election towards fulfilling her will, independent of
complexity theory assumptions, we say that the rule is immune to the corresponding control
type. The formal definitions of the control problems appear in the following subsections and
are adaptations to cms elections, of the original definitions of control problems provided in
(Bartholdi III et al., 1992). An overview of the results we obtained follows.

6. It’s crucial to bear in mind that the notion of resistance is rooted in the realm of worst-case instances,
supported by our NP-hardness results. These results indeed pose a barrier for controllers seeking to
manipulate the outcomes, but this may not be true for every instance of the problem. In real-world
scenarios, the susceptibility of cms to such attempts may exhibit different behaviour.
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CDV & CAV CDA CAA
∆ = 0 ∆ = 0 ∆ = 1 ∆ = 0 ∆ = 1 ∆ = 1 ∆ = 0 ∆ = 1 ∆ = 2

d = O(1) d = ω(1) d = O(1) d = Ω(1) d = O(1) d = Ω(n) d = Ω(1) d = Ω(n) d = O(1)

ALL R R R V R R I I I

1 V R R V V R I R R

Table 3: Results on Controlling cms elections. R stands for (worst-case) Resistant (i.e. NP-hard),
V for Vulnerable (i.e. polynomially solvable) and I for Immune (i.e. impossible, independent of
complexity theory assumptions). For a cms instance on n voters, we denote as ∆ the maximum
in-degree of every voter’s dependency graph (∆ = maxi∈[n] ∆i) and d the maximum domain size.

4.1 Controlling Voters

We start with the problems of adding or deleting voters for enforcing a specific outcome
either for a single issue or for every issue of the election.

Instance: A cms election (I,D, V,B), where V is the set of registered voters, a set V ′

of yet unregistered voters with V ∩ V ′ = ∅ (for use only by cav), an integer quota q, a
distinguished alternative pj ∈ Dj for a specific issue Ij or an outcome p ∈ D (for the
“ALL” versions) specifying an alternative for every issue.
Problem cav-1 (resp. cdv-1): Does there exist a set V ′′ ⊆ V ′ (resp. V ′′ ⊆ V ), with
|V ′′| ≤ q, such that pj is the value of issue Ij in every optimal cms solution of the profile
(I,D, V ∪ V ′′, B) (resp. of the profile (I,D, V \ V ′′, B))?
Problem cav-all (resp. cdv-all): Does there exist a set V ′′ ⊆ V ′, (resp. V ′′ ⊆ V )
with |V ′′| ≤ q, such that p is the unique optimal cms solution of the profile (I,D, V \V ′′, B)
(resp. of the profile (I,D, V \ V ′′, B))?

Remark 3. One has the option of either breaking ties in favor of the controller, if there are
multiple optimal solutions in cms (as in (Davies, Katsirelos, Narodytska, & Walsh, 2011)),
or demand that the controller’s will is fulfilled in every optimal outcome. We focus on the
second case, as is also done in the seminal paper of Bartholdi et al. (Bartholdi III et al.,
1992). Additionally, it is possible that the controller has a strong opinion not just for a
single or all issues, but for a subset of issues. As a starting point, we have chosen to consider
the two extremes (and intuitively simpler versions).

We now present our results for these 4 problems, exhibiting that it is not generally easy
for a controller to enforce her will in such elections. In fact, computational hardness of
controlling by adding or deleting voters can be established even for very simple forms of
elections, without even the presence of conditional ballots, as shown in the two theorems
that follow.

Theorem 8. cdv-all is NP-hard even for Unconditional Minisum and for a binary domain
in each issue.

Proof. To prove the NP-hardness, we will have a reduction from the vertex cover prob-
lem. Thus we start with an instance (G = (V,E), k), which asks if there is a vertex cover
of size at most k, and create an instance P of cdv-all.

For every edge e ∈ E, we add an issue Ie having two possible alternatives, and denote
its domain by De = {de, de}. For every vertex v ∈ V , we add a voter voting unconditionally
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for de, if e is incident to v and being satisfied with both {de, de} otherwise. Let there
also be 2 dummy voters who are satisfied only with de for every issue Ie. Hence, all the
ballots are unconditional, and we have an empty global dependency graph. For the quota
parameter, we use q = k, and suppose that the controller wants to enforce the alternative
de for every issue Ie. This completes the description of the cdv-all instance, where the
goal is to decide if there exists a set V ′′ of size at most q, such that deleting those voters
enforces the controller’s desirable outcome.

Suppose that there exists a vertex cover S ⊆ V of G, of size at most k. Since each
edge of G has at least one endpoint in S, by removing all voters that correspond to S, each
alternative de loses at least one approval vote. Hence, de would cause two dissatisfactions to
the dummy voters (the others are indifferent), whereas de causes at most one dissatisfaction.
Therefore, selecting the alternative de for every issue Ie is the unique optimal solution,

For the reverse direction, suppose there exists a set of voters S, whose removal causes
the outcome (de)e∈E to become the unique optimal solution. First, we may assume that S
does not contain any of the dummy voters (otherwise, add them back to the instance, and
the total dissatisfaction score will not be affected). Suppose that S is not a vertex cover
in G, and that at least one edge e is not covered by S. But this means that the removal
of S from the cdv-all instance will leave intact the two voters that are satisfied only with
de, and therefore de can also be selected in an optimal solution (it causes the same number
of dissatisfactions as de). This contradicts the fact that the removal of S resulted in the
unique optimal solution with de selected for every issue Ie.

Theorem 9. cav-all is NP-hard even for Unconditional Minisum and for a binary domain
in each issue.

Proof. The proof is a simple adaptation of a reduction given for almost the same problem but
in the context of the classic (unconditional) approval voting rule in (Hemaspaandra et al.,
2007). For the sake of completeness, we provide the full construction here. We stress that
we cannot directly establish NP-hardness by applying the result of that work because when
there are no conditional ballots, the version of approval voting as defined there selects as
winner(s) the candidates who have the highest number of approvals, whereas Unconditional
Minisum selects only candidates who are approved by at least 50% of the voters. In the
instances used in the reductions of (Hemaspaandra et al., 2007) (see Theorem 4.43 therein),
there are losing candidates who are approved by more than 50% of the voters, hence their
proofs do not apply directly.

We start with an instance P of exact-3-cover (x3c) where B = {b1, . . . , bm} with
m = 3k is the universe, and F = {S1, . . . , Sn} is a collection of sets with |Si| = 3, for every
set Si. The goal is to decide if there is an exact cover, i.e. a subcollection of sets from F
such that each element of the universe belongs to exactly one of these sets.

We now define a cms election where the set of issues is I = B ∪ {Im+1} and each issue
has a binary domain, with Dj = {bj , bj} for j ∈ [m], and Dm+1 = {w,w}. The set of voters
is as follows:

• There are k − 2 registered voters who are satisfied with bj for j ∈ [m], and with w.
They are dissatisfied with the complements of these alternatives.

• There is one registered voter who is satisfied only with bj for j ∈ [m] and with w.
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• There are n unregistered voters corresponding to the sets of x3c instance. The voter
corresponding to Si is satisfied only with the 3 alternatives of Si, and with w.

To finish the description, we set the quota parameter q equal to k and the desirable outcome
of the controller to be (b1, . . . , bm, w). Hence, the goal in the cav-all instance is to decide
if there exists a set of unregistered voters V ′′ with |V ′′| ≤ k such that adding V ′′ to the
registered voters makes the desirable outcome the unique optimal solution.

Suppose now that there exists an exact cover in P . Since m = 3k, the cover consists of
exactly k sets. Select as V ′′ the k unregistered voters corresponding to the cover. We now
have a total of 2k−1 voters in the election. For the first m issues, the alternative bj satisfies
exactly k−1 voters and dissatisfies k voters, hence the optimal solution selects bj for j ∈ [m].
For the last issue, the value w satisfies k voters and dissatisfies the remaining k − 1 voters.
Hence, the unique optimal solution when adding the set V ′′ is precisely (b1, . . . , bm, w).

For the opposite direction, suppose that there is a set V ′′ of unregistered voters, with
|V ′′| ≤ k, such that when adding them to the registered voters, the unique optimal solution
is the controller’s desirable outcome. First notice that this implies that |V ′′| = k, otherwise
there is not enough support for w to be selected. The only other possibility would be to
have |V ′′| = k− 1, but then we have a tie, and there would be more optimal solutions with
w instead of w. Since for the other issues, each bj already has a support by k− 2 registered
voters, then none of them received a support by two or more of the added voters. But
these voters express a support for a total of 3k = m such alternatives, therefore, each bj for
j ∈ [m], receives support by exactly one of the added voters.

The next step is to see whether the hardness results of Theorems 8 and 9 go through
when the controller wishes to control just a single issue. For Unconditional Minisum this is
not the case if we insist on a constant domain size for the designated issue. The reason is
that this can be reduced to an FPT version of the well known Set MultiCover problem.

Proposition 1 (implied by (Bredereck, Faliszewski, Niedermeier, Skowron, & Talmon,
2020)). cav-1 and cdv-1 can be solved in polynomial time for Unconditional Minisum if
the domain size of each issue is constant.

As a consequence, any potential hardness result for cav-1 and cdv-1 would have to
consider either non-constant domain sizes or conditional ballots. Indeed, we establish that
either of these settings suffices to establish NP-hardness. We start with elections where at
least one issue has a non-constant domain size.

Theorem 10. cav-1 and cdv-1 are NP-hard, even for Unconditional Minisum, but with
non-constant domain size in at least one issue.

Proof. We will only describe the proof of NP-hardness for cav-1 and the same can be
established for cdv-1 in a very similar fashion, using almost the same reduction.

We will have a reduction from the problem of controlling a classic approval voting
election by adding voters, proved NP-hard in (Hemaspaandra et al., 2007). We recall that
in an approval voting election, voters express their approved set of candidates, and the
winner (or winners in case of ties) is the candidate with the highest number of approvals.
The control problem there is to ensure that a designated candidate is the unique winner of
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the election. Our reduction starts with an instance P of the control problem in approval
voting, where V and V ′ are the registered and unregistered sets of voters respectively, p is a
designated candidate, and q is a quota. The goal is to select a set V ′′ ⊆ V ′ with |V ′′| ≤ q, so
that the approval voting rule, when run on the voters in V ∪ V ′′ will select p as the unique
winner.

We create an instance P ′ of cav-1 where the sets of voters, registered and unregistered,
are the same as in P . If the number of candidates in P is m, we create a single issue in
P ′ whose domain has exactly m possible alternatives, and p is the designated alternative
that the controller wants to promote in P ′. For every voter in P (whether coming from V
or V ′), the corresponding voter in P ′ specifies an unconditional ballot on the single issue,
containing only her approved options in P . We also use the same quota parameter q as in
P . This completes the description of P ′, which can be clearly constructed in polynomial
time.

It is now easy to see that there exists a set V ′′ ⊆ V ′ of at most q voters so as to ensure
that p will be the outcome on the single issue of P ′, using the cms rule for the voters of
V ∪ V ′′, if and only if the same set of voters can ensure that p will be the unique winner
in the approval voting election of P . Indeed, if the cms rule, run on the voters of V ∪ V ′′,
selects the outcome p in the instance P ′, this means by the definition of the cms rule that p
causes the minimum number of dissatisfactions among all possible alternatives, i.e., it has
the highest number of approvals. This directly yields that p will be the unique winner in
the instance P . The reverse direction is easy to see as well, with the same reasoning.

We now study the hardness of these problems when we have conditional ballots. As the
next theorem shows, it suffices to consider only profiles where each issue may depend on at
most one other issue.

Theorem 11. cdv-1 and cav-1 are NP-hard, when ∆ ≤ 1, even for a binary domain in
every issue.

Proof. We will focus on proving the statement for cdv-1. The proof for cav-1 is very
similar, requiring minimal changes, that we discuss at the end. We will prove that cdv-1
with a binary domain for every issue, and with ∆ = 1 is NP-hard, using a reduction from
the NP-hard version of cdv-1 with ∆ = 0 and non-constant domains (Theorem 10). We
firstly remind the reader that the proof of Theorem 10 indicates that the problem cdv-1
with ∆ = 0 and non-constant domain sizes is NP-hard, even for the family of instances
with just a single issue (that has a non-constant number m of different alternatives), where
every voter casts only approval ballots for a subset of alternatives.

Our reduction starts from an instance P of cdv-1 on a single issue with non-constant
domain size (obviously ∆ = 0, since we have only one issue), and creates an instance P ′

of cdv-1 with binary domain for every issue and with ∆ = 1. Say that the issue of P has
the following m different alternatives: {d1, d2, . . . , dm}. Then the instance P ′ consists of m
different binary issues I1, I2, . . . , Im such that the alternatives of issue Ij are {dj , dj}, for
j ∈ [m]. Hence, the idea is that each alternative of the single issue of P now corresponds
to a different issue in P ′ with positive and negative alternatives. Furthermore, if q was the
quota in P , we will use the same quota in P ′. Finally, if dℓ was the designated alternative
in P , for some specific ℓ ≤ m, then we will have that dℓ is the designated alternative for
issue Iℓ in P ′.
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We describe now the set of voters in P ′ as well as their preferences. For every voter v
of P , we add a voter v′ in P ′, such that for any j ∈ [m], if v was approving the alternative
dj for the single issue of P , then v′ approves dj concerning the issue Ij in P ′, otherwise, if
v was not approving dj in P , then v′ is indifferent in P ′ and votes for {dj , dj}. We also add
a set of m(m − 1)L dummy voters, where L = nm + q + 1 and n is the number of voters
in P . In particular, for every ordered pair of distinct alternatives of P , i.e., for every (k, j),
with k, j ∈ [m], and k ̸= j, we include L voters voting dk for issue Ik, {dk : dj} for issue Ij ,
and {dt, dt}, for every other issue It, with t ∈ [m] \ {k, j}.

We will first prove the following claim, which is enforced by the construction of P ′.

Claim 4. Let P ′′ be the conditional approval voting profile that is derived by the deletion
of a set of at most q non-dummy voters from the instance P ′. Then, in any optimal cms
solution of P ′′, there is exactly one issue Ij for which the selected alternative is dj, and for
every k ̸= j, the selected alternative will be dk.

Proof of Claim 4. Let us define first the set of outcomes where exactly one issue takes a
positive value, i.e., let POS1 = {{y1, y2, . . . , ym} : ∃i ∈ [m] : yi = di,∀j ∈ [m]\{i} : yj = dj}.
We will firstly prove that for any solution that belongs to POS1, the total dissatisfaction
incurred by the set of dummy voters equals m(m − 1)L. To prove that, we inspect an
arbitrary outcome of POS1, say {d1, d2, . . . , dp−1, dp, dp+1, . . . , dm}, for some p ∈ [m]. It is
convenient to view the set of m(m− 1)L dummy voters of P ′′, as being partitioned in the
following 3 sets:

• The (m − 1)(m − 2)L dummy voters whose dependency graph consists of an edge
(Ik, Ij), such that k, j ̸= p. These voters are dissatisfied only with respect to issue
Ij since they are voting for {dk : dj} and dk is not selected. They are satisfied with
respect to Ik since they are voting in favor of dk, which is elected, and they are
indifferent (hence satisfied) with respect to all other issues.

• The (m − 1)L dummy voters whose dependency graph consists of an edge (Ip, Ij),
such that j ̸= p. These voters are dissatisfied only with respect to issue Ip since they
are voting for dp but dp is elected. They are satisfied with respect to Ij since they are
voting in favor of {dp : dj} and both dp and dj are elected. Finally they are satisfied
with respect to any It, for t ̸= p, j, since they are indifferent for these issues.

• The (m−1)L dummy voters whose dependency graph consists of an edge (Ij , Ip) such
that j ̸= p. These voters are dissatisfied only with respect to issue Ip since they are
voting for {dj : dp}. Furthermore they are satisfied with respect to Ij since they are
voting in favor of dj , and they are satisfied with respect to any other issue.

Hence, the total dissatisfaction score of any outcome in POS1, due to the dummy voters is
m(m− 1)L. To count the dissatisfaction from the remaining non-dummy voters, we define
the following quantity: let xi be the number of voters in the original instance P (after
deleting the voters that correspond to the ones deleted in P ′) who had di in their approval
list in P . Then, it can be verified that the total dissatisfaction due to the non-dummy
voters for the profile P ′′, is

∑
i∈[m]\p xi. Hence, to concude, the total dissatisfaction score

for P ′′, under any outcome that belongs to POS1 is equal to m(m− 1)L+
∑

i∈[m]\p xi.
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We will now compare the dissatisfaction score of the outcomes in POS1 with all other
possible outcomes. We can define analogously the set of outcomes POS2 = {(y1, y2, . . . , ym) :
∃i, j ∈ [m] : yi = di, yj = dj , ∀k ∈ [m] \ {i, j} : yk = dk}. We will firstly prove that the total
dissatisfaction incurred by dummy voters in outcomes from POS2 is at leastm(m−1)L+2L.
To prove it, we inspect an arbitrary outcome of POS2, say (y1, . . . , ym) with yp = dp,
yr = dr, for some specific p, r, and also yj = dj , for any j ̸= p, r. We analyze the set of
dummy voters, by partitioning them in 4 sets as follows:

• The (m − 2)(m − 3)L dummy voters whose dependency graph has the edge (Ik, Ij),
for some k, j where both k, j ̸= p, r. These voters are dissatisfied only with respect to
issue Ij since they are voting for {dk : dj} but dk is elected. They are satisfied with
respect to Ik since they are voting in favor of dk. Finally they are indifferent and
hence satisfied with respect to all other issues.

• The 2(m − 2)L dummy voters whose dependency graph has either the edge (Ip, Ij)
or (Ir, Ij)), with j ̸= p, r. We analyze the ones with the edge (Ip, Ij), and the same
conclusion holds for the other case as well. These voters are dissatisfied only with
respect to issue Ip since they are voting for dp, but dp is elected. They are satisfied
with respect to Ij since they are voting in favor of {dp : dj} and both dp and dj are
elected. Finally they are satisfied with respect to any It, for t ̸= p, j, since they are
indifferent.

• The 2(m − 2)L dummy voters whose dependency graph consists of the edge (Ij , Ip)
or (Ii, Ir) for some j ̸= p, r. We argue about the voters with the edge (Ij , Ip) as the
other case is also identical. These voters are dissatisfied only with respect to issue Ip,
since they are voting for {dj : dp} but dp is elected. They are satisfied with respect
to Ij since they are voting in favor of dj which is elected. Finally they are indifferent
with respect to other issues.

• The 2L dummy voters whose dependency graph consists of the edge (Ip, Ir) or (Ir, Ip).
These voters are dissatisfied with respect to issues Ir and Ip. Consider the ones with
the edge (Ip, Ir). They are voting for {dp : dr} but dr is elected. Additionally, they
are voting for dp but dp is elected. They are satisfied with respect to any other issue
since they are indifferent.

The above analysis shows that the dissatisfaction score due to the dummy voters is
(m− 2)(m− 3)L+ 2(m− 2)L+ 2(m− 2)L+ 4L = m(m− 1)L+ 2L. This is larger by the
term 2L, compared to the dissatisfaction of the dummy voters in outcomes of POS1. By
the choice of L, it is impossible that the dissatisfaction of the non-dummy voters causes an
outcome of POS2 to have a better or equal score than those of POS1 (note that L > mn and
the total dissatisfaction of the non-dummy voters is bounded by mn). Hence, the optimal
solution cannot be attained by POS2. In a similar manner, we can define POSk, for any
k > 2, and prove that the total dissatisfaction score of any outcome in POS1 is less than
the dissatisfaction score of any outcome in POSk. Equivalently, there can be no more than
a single positive alternative in the optimal outcome of P ′′.

Finally, we also need to compare with the “all-negatives” outcome, where dj is selected
for every j ∈ [m]. It is a matter of a simple case analysis (like the ones before) to prove
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that the dissatisfaction incurred by the dummy voters equals m(m− 1)L, which equals the
dissatisfaction of the dummy voters for outcomes in POS1 as well. Hence, now we only need
to argue about the non-dummy voters; it is safe to say that these are more than q. To do
this, note that in the original instance P , we can assume without loss of generality that at
least one voter approves at least one alternative, otherwise we have a trivial election, where
no one expresses any preferences. This means that xp > 0 for at least one issue p ∈ [m].
By the construction of the preferences for the non-dummy voters in P ′, the dissatisfaction
score for the “all-negatives” outcome equals

∑
i∈[m] xi. Recall also that for the outcome in

POS1, where only issue p has a positive value, the dissatisfaction of the non-dummy voters
is

∑
i∈[m]\{p} xi. Therefore, we have that there exists an outcome in POS1 which causes

strictly less dissatisfaction to the electorate, and this concludes the proof. □

Let P be a yes instance, i.e., say that there is a set S of at most q voters, the deletion
of which causes the election of dℓ in P , as the unique winner. Note that for every voter in
P there is a corresponding voter in P ′. Consider the deletion of the set S′ from P ′ that
corresponds exactly to the voters of S from P . By exploiting Claim 4, it suffices to prove
that by deleting S′, the outcome pℓ = {d1, d2, . . . , dℓ−1, dℓ, dℓ+1, . . . , dm} causes strictly
less dissatisfactions in the electorate than pj = {d1, d2, . . . , dj−1, dj , dj+1, . . . , dm}, for any
j ̸= ℓ. To do so, for any i ∈ [m], let xi be the number of voters (among the remaining
ones, after deleting the set S) who had di in their approval list in P . By using the same
argument as in the proof of Claim 4, we can see that for the non-dummy voters of P ′ who
correspond to those of P , the number of dissatisfactions caused by the outcome pℓ in P ′

is (
∑

i∈[m]\ℓ,j xi) + xj . Also, by doing the same counting argument as in the first part of
the proof of Claim 4, each dummy voter will be dissatisfied with exactly one issue, and
hence they contribute a total of m(m−1)L in the cumulative number of dissatisfactions. In
the same manner, we can also have that the total number of dissatisfactions caused by the
outcome pj is (

∑
i∈[m]\{l,j} xi)+xℓ+m(m−1)L. Given that dℓ was the winning alternative

in P after the deletion of voters, it is true that xℓ > xj and hence the dissatisfaction caused
by pj is greater than the dissatisfaction caused by dℓ. By Claim 4, this concludes the first
direction of the proof.

For the reverse direction, say that there is a set of voters S′ in P ′, after the deletion
of which, dℓ is the winning alternative for issue Iℓ. We note that because of the large
value of L, including any dummy voter in the set S′ will not influence the final outcome
(since L > q, even if all the deleted voters are dummy ones, we cannot enforce a different
outcome than the outcome without deletions). Hence, we can assume that the set S′ has
no dummy voters. We can choose then to delete the corresponding set of voters S in P
and we will need to prove that, in that case, the elected alternative will be dℓ for the single
issue of P . By Claim 4, and since we assumed that dℓ is selected for issue Iℓ, we know
that the optimal solution in the instance after the deletion of S′ selected dj for any other
j ̸= ℓ. Thus, the winning outcome is pℓ = {d1, d2, . . . , dℓ−1, dℓ, dℓ+1, . . . , dm}. Therefore,
the number of dissatisfactions caused by pℓ is lower than the number of dissatisfactions
caused by pj = {d1, d2, . . . , dj−1, dj , dj+1, . . . , dm}, for any j ̸= ℓ. But this implies that
(
∑

i∈[m]\{ℓ,j} xi)+xj < (
∑

i∈[m]\{ℓ,j} xi)+xℓ, or equivalently, xℓ > xj , which means that the
number of voters that are not included in S, and have dℓ in their approval list, is greater
than the number of voters not included in S, who have dj in their list for any j ̸= ℓ. Thus,
in P , dℓ will be selected, fulfilling the controller’s will.
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Adjustments for the cav-1 reduction: So far we have established that cdv-1 is NP-hard. To
prove that cav-1 is also NP-hard for binary domains, we will perform a similar reduction,
this time from cav-1 with a single issue and with a non-constant domain size (which is
again NP-hard by Theorem 10). The construction is almost the same, with the difference
being that in cav-1, there are both registered and unregistered voters. Our reduction will
assign preferences in the same way as in the proof for cdv-1 and will simply maintain the
separation into registered and unregistered voters in the created instance P ′. Furthermore,
we include the dummy voters in the set of registered voters and we set L = m(n + q) + 1.
Everything else in the reduction is the same as before, and it is a matter of calculations
analogous to the proof of cdv-1 to verify the correctness of the reduction.

To conclude this subsection, we have now a complete picture for the level of robustness
against the malicious actions of adding or deleting voters. Our results act in favor of
the cms rule, showing that a potential controller cannot easily (in terms of computational
complexity) enforce her own desirable outcomes, apart from a single case, as shown in Table
3. Interestingly, this, single, polynomially solvable case concerns the unconditional setting
and when one moves to the conditional case, the considered problem becomes hard for the
controller. Finally, it’s worth noting that despite the need for distinct proof approaches
in certain cases, the results for the two examined problems (deleting/adding voters) are
identical; this observation does not extend to the problems related to the deletion and
addition of alternatives, as elucidated in the forthcoming subsection.

4.2 Controlling Alternatives

We now consider the analogous control problems, regarding the addition or deletion of alter-
natives, instead of voters. It turns out that the picture, from the computational complexity
viewpoint, differs sufficiently from the problems considered in the previous subsection.

Instance: A cms election (I,D, V,B), where D = D1 × · · · ×Dm, and Dk is the set of
qualified alternatives of each issue Ik, a set D′

k of spoiler alternatives for each Ik (for use
only by caa), an integer quota q, a distinguished alternative pj ∈ Dj for a specific issue
Ij or an outcome p ∈ D specifying an alternative for every issue.
Problem caa-1 (resp. cda-1): Does there exist a set D′′ ⊆ ∪k∈[m]D

′
k (resp. D′′ ⊂

∪k∈[m]Dk), with |D′′| ≤ q, such that pj is the value of the issue Ij in every optimal cms
solution of the profile where the domain of each issue Ik is enlarged by the alternatives
in D′′ ∩D′

k (resp. reduced by the alternatives in D′′ ∩D′
k)?

Problem cda-all: Does there exist a set D′′ ⊂ ∪k∈[m]Dk, with |D′′| ≤ q, such that p
is the unique optimal cms solution of the profile where the domain of each issue Ik is
reduced by the alternatives in D′′ ∩Dk?
Note: For cda-1 and cda-all, we also require that for every k, |Dk \D′′| ≥ 1.

Remark 4. We firstly note that all the comments made in Remark 3 are applicable here
as well. Also, we have not included caa-all in our definitions as cms is trivially immune
to adding spoiler alternatives in order to enforce a qualified alternative in every issue.
Concerning the problem caa-1, we assume that the voters in B may express an opinion
about any outcome of every issue, whether it is a qualified one or a spoiler. Additionally,
another way to define such problems would be to allow the controller to completely delete or
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add issues instead of just alternatives. However, given the existence of dependency graphs,
erasing an issue can make the preferences of a voter ill-defined. Lastly, the constraint that
|Dk \D′′| ≥ 1, for cda-1 and cda-all, is to ensure that the controller cannot eliminate all
the alternatives of an issue.

Proposition 2. Unconditional Minisum, with arbitrary domain size is immune to caa-1.
For the same setting, cda-1 and cda-all can be solved in polynomial time.

Proof. To solve cda-1 and cda-all we only have to observe that to control a single issue by
deleting alternatives in the unconditional case, one can check if the quota is large enough
to delete all alternatives that achieve higher approval score than the designated one(s).
At what concerns caa-1, the definition of immunity directly applies, since the controller
cannot enforce a designated alternative in Unconditional Minisum by adding some other
alternative (whether for the same or for a different issue).

When we move to instances with conditional ballots, the problems cda-1 and cda-all
do become hard (with the exception of Proposition 3 in the sequel). We start with the
hardness of cda-all.

Theorem 12. cda-all is NP-hard, when ∆i ≤ 1 for every voter i, and even for a binary
domain size in every issue.

Proof. Let P = (G, k) be an instance of vertex cover, for an undirected graph G with n
vertices and m edges, and an upper bound k on the desirable size of the cover. We denote
by e1, e2, . . . , em, the edges of the graph. We will present a reduction from P to an instance
P ′ of cda-all. Let there be the following 2m(k + 1) + n issues:

• For every edge eℓ of G, ℓ ∈ [m], and for j ∈ [k+ 1] let Iℓ,j and I ′ℓ,j be a pair of binary

issues of domain {eℓ,j , eℓ,j} and {e′ℓ,j , e′ℓ,j} respectively,. We refer to these issues as
edge issues.

• For every vertex v of G let Iv be a binary issue of domain {dv, dv}. We refer to these
issues as vertex issues.

Note that, we have added one vertex issue for every vertex of G and, essentially, we
have introduced two edge issues for every edge of G, but in (k+1) ’copies’. This will play a
significant role in the reverse direction of the reduction. The voters of the created instance
P ′ will be 2m+ 3 in total, and we partition them as follows:

• Group 1: There are 2 edge voters for every edge ei of G. For an edge ei = (u, v) and
for every j ∈ [k+1], these voters submit the same ballot {du : ei,j , dv : e′i,j} (where we
have arbitrarily chosen that the satisfaction of one edge issue depends on the vertex
issue Iu and the other edge issue depends on the remaining vertex issue Iv). The
voters are indifferent for the rest of the issues. Hence, every such voter is interested
in exactly 2(k + 1) edge issues, each conditioned on either Iu or Iv. At what follows,
we will refer to these voters as “group 1” or edge voters.

• Group 2: There are 2 voters who are voting for {ei,j : e′i,j}, for every pair (i, j) ∈
[m] × [k + 1], and who are indifferent for every other issue. At what follows, we will
refer to these voters as “group 2”.
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• There is one voter, that we will refer to as the special voter, who is voting uncondi-
tionally d1, d2, . . . , dn for the vertex issues, and is indifferent for every other issue.

To complete the construction of the instance P ′, we use k as the quota parameter, and
we suppose the controller wants to enforce the outcome {(ei,j , e′i,j)i∈[m],j∈[k+1], (dj)j∈[n]} by
removing at most k alternatives. It is trivial to observe that all the issues in the instance
P ′ are of binary domain and that for every voter i, ∆i ≤ 1 in her dependency graph.

Before we proceed, we note that the designated outcome fully satisfies the voters from
group 2 as well as the special voter, however, it dissatisfies every edge voter with respect
to all 2(k + 1) issues they care about each, hence it produces a total dissatisfaction score
of 4m(k + 1). Additionally, we highlight that there are also other outcomes with the same
score, which prevent the designated one from being the unique winner without deleting any
alternatives in P ′. For instance, if et is the edge (u, v) of G, then consider the following
outcome, for any ℓ ∈ [k + 1]:

{(et,ℓ, e′t,ℓ), (ei,j , e′i,j)(i,j)∈[m]×[k+1]\(t,ℓ), du, dv, (dj)j∈[n]\{u,v}} (2)

The outcome described in Equation 2 has a dissatisfaction score of 4(m− 1)(k+1)+4k
from group 1 and a dissatisfaction score of 1 from each voter in group 2 and a dissatisfaction
score of 2 for each remaining voter, leading to a total score of 4m(k + 1).

To see now the forward direction of the reduction, suppose there exists a vertex cover
in G of size at most k, which is formed say by a set of vertices S ⊂ [n]. Then we choose to
delete in the created instance P ′ of cda-all, the corresponding positive alternatives {dj}
for j ∈ S, from the vertex issues {Ij}j∈S , respectively. Hence, any solution to the resulting
instance after these deletions, should now definitely contain the alternative dj for every
issue Ij , such that j ∈ S. Clearly, the designated outcome still remains a valid solution
with a total score of 4m(k+ 1). We need to see what happens with the rest of the possible
outcomes.

One can easily verify that the best solution among the feasible ones in which all edge
voters are dissatisfied with respect to all the issues they care about, is precisely the desig-
nated outcome (because it satisfies in all issues all the other voters from group 2 as well as
the special voter, and also no other solution can achieve the same). Hence, it remains to
see if there exists any optimal solution with at least one pair of edge voters satisfied with
respect to at least one issue.

For the sake of contradiction, assume that this is the case, and consider a pair of such
edge voters, corresponding to edge e = (u, v). Without loss of generality, suppose that u
does not belong to the vertex cover, and hence du is an available alternative, that has been
selected in the optimal solution we are considering, and also that dv has been deleted. This
is due to the vertex cover property, implying that either du or dv has been deleted and
furthermore, if both had been deleted, the pair of edge voters that we focus on, would not
be satisfied with respect to any issue, contrary to what we have assumed. The selection
of du may also cause other edge voters (whose edge is incident with u) to be satisfied as
well, with respect to some issues. To arrive at a contradiction, and for ease of notation, let
e1, . . . , eℓ, be the edges that have u as an endpoint, and that correspond to edge voters who
are satisfied with respect to at least one of the issues they care about, under the optimal
solution we are considering. Additionally, for such an edge ei, let m(i) be the number
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of issues that correspond to ei, and with respect to which, the two edge voters of ei are
satisfied (this occurs because the edge voters may have declared du : ei,j or du : e′i,j). Clearly
m(i) ≤ k+1. Counting the total number of satisfactions of edge voters due to the selection
of du, we get exactly 2

∑ℓ
i=1m(i). But if we now replace du by du and set all the edge issues

of the edges e1, . . . , eℓ, to their negative value, then we will dissatisfy all the edge voters
that we were satisfying before, but we get 2

∑ℓ
i=1m(i) new satisfactions from group 2 and

one new satisfaction from the special voter. Therefore, we reach an outcome with a lower
dissatisfaction score, contradicting the fact that we started with an optimal solution.

We conclude that there cannot exist an optimal solution, after the deletions we made,
where some of the voters from group 1 enjoy any satisfaction. Therefore, we can only satisfy
group 2 and the special voter, and we can conclude that after the deletion of at most k
(positive) alternatives that correspond to a vertex cover, the designated outcome becomes
the unique winner.

For the reverse direction, suppose that there is a set D of at most k alternatives, the
deletion of which, forces the designated outcome to be the unique optimal solution. Trivially,
D cannot contain negative values neither from edge nor from vertex issues. We denote by
DV the subset of D that contains positive values from vertex issues and let S be the
corresponding set of vertices in G. We claim that S forms a vertex cover of G. Towards
a contradiction, say that S is not a vertex cover. Then, there exists an edge et = (u, v)
such that both du, dv /∈ DV , thus du and dv are still feasible alternatives, after the deletions
we have made. Note that due to the budget constraint, it holds that |D′′| ≤ k. Hence out
of the 2(k + 1) issues that the edge voters corresponding to et care about, there exists an
index ℓ, such that both et,ℓ and e′t,ℓ are still available, after the deletion of D. But then,
the outcome described in Equation (2) is still feasible, which contradicts the fact that the
designated outcome became the unique winner after the deletion of D.

Moving to cda-1 and caa-1 we show that we can have hardness results, but only under
a non-constant domain size for at least one issue. The proof of Theorem 13 below, shows
a connection with some natural problems on graphs, that have been previously linked to
election control for other voting rules (Betzler & Uhlmann, 2009).

Theorem 13. caa-1 and cda-1 are NP-hard, when ∆i ≤ 1 for every voter i, and even
when the treewidth of the global dependency graph is at most one, but with non-constant
domain size in at least one issue.

Proof. We will firstly prove the hardness of cda-1. We will perform a reduction from the
NP-hard problem max out-degree deletion (mod) (Betzler & Uhlmann, 2009).

Instance: A directed graph G = (V,E), a special vertex p ∈ V and an integer k ≥ 1.
Output: Does there exist V ′ ⊆ V with |V ′| ≤ k such that p is the only vertex of
maximum out-degree in G[V \ V ′]?

For S ⊆ V , we denote by degS(u) the out-degree of vertex u in a graph G = (V,E),
when we count only outgoing edges towards the vertices of S. Let P = (G = (V,E), p, k)
be an instance of mod in a directed graph with n vertices and m edges We create a cda-1
instance, where we have one issue Ij for every vertex vj , j ∈ [n] and an extra issue I0,
hence I = {I0, I1, I2, . . . , In}. For j ∈ [n], the domain of issue Ij is binary in the form
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Dj = {dj , dj}. The domain of I0, say D0, contains (k + 1)(n − 1) + 1 alternatives. In
particular, it contains an alternative bp that corresponds to the designated vertex p ∈ V ,
and for every vertex v ∈ V \ {p}, there are k+1 alternatives bℓv, for ℓ ∈ [k+1]. Essentially,
these are identical k+1 ’copies’ encoding the selection of v in I0, and play a significant role
in the reverse direction of the reduction. As for the voters, there are two types of voters,
edge voters and vertex voters. There is one edge voter for every edge (i, j) ∈ E, with a
dependency graph having one edge from Ij to I0, and voting as follows:

• For the issue I0, she votes conditioned on Ij for {dj : bi} if i = p or otherwise for
{dj : bℓi}, ∀ℓ ∈ [k + 1].

• For all other issues she is satisfied with any alternative.

For every vertex other than p, we also have a block of L identical voters, where it suffices
to take L = m+ 1. Each voter in the j-th block, with j ∈ V \ {p} has a dependency graph
with 1 edge, from I0 to Ij and votes as follows:

• For the issue Ij , she is satisfied with the combinations {bℓj : dj} for any ℓ. Also, if the

value of I0 differs from bℓj , for any ℓ, she is satisfied with any value on Ij . Hence, the
only restriction is that when the value of I0 comes from an alternative corresponding
to vertex j, the voter can be satisfied with respect to Ij only by dj .

• For all other issues, she is satisfied with any alternative.

In total, we have m + (n − 1)L voters. We also use k as the quota parameter, and we
suppose the controller wants to enforce the alternative bp at issue I0. Clearly, for every voter
i, ∆i ≤ 1 in her dependency graph, and the global dependency graph is a star centered on
I0. The maximum domain cardinality is O(kn) = O(n2).

For a better view of the construction we comment on Figure 3, which illustrates the
reduction to cda-1. In particular, it illustrates only a part of the construction that pertains
to the vertices of a subgraph G′ of the initial graph G given in the instance of mod (as shown
in the upper-left part of the figure). The figure also depicts the voters’ ballots (rightmost
part of the figure) and the global dependency graph which emerges (lower-left part of the
figure). To be more precise, the lower-left part shows the union of the dependency graphs
of all voters, where both orientations are present for the edges shown. Hence, the global
dependency graph is simply a star centered on I0. The connections in the rightmost part
of the figure represent acceptable pairs of alternatives by voters. More precisely, a dotted
connection between the alternatives dj and bℓj for some j and ℓ, represents the conditional

approval ballot {bℓj : dj} of the block of the L identical vertex voters that correspond to

vj of G′. A solid connection between the alternatives dj and bℓi (resp. between di and
bp) represents the conditional approval ballot {dj : bℓi} (resp. {dj : bp}) of an edge voter
corresponding to edge (vi, vj) (resp. (p, vj)) of G

′.
Suppose there exists a set S of vertices in G of size at most k, say without loss of

generality that S = {1, . . . , k} ⊆ V , whose deletion leaves p as the only vertex of maximum
out-degree. We now choose to delete the corresponding alternatives {d1, . . . , dk} from the
issues {I1, . . . , Ik}. If we select bp for the issue I0, then the total dissatisfaction score can
be brought down to m− degV \S(p) by choosing dj for every issue Ij where dj has not been
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Figure 3: Illustrative example of the reduction in the proof of Theorem 13
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deleted. To see this, the only edge voters that are satisfied with respect to I0 are edges
that are outgoing from p and whose other endpoint belongs to V \ S. Hence all remaining
m − degV \S(p) voters will be dissatisfied with respect to I0. Regarding the vertex voters,
they will all be satisfied on all issues.

On the other hand, if we select for I0 some bℓj for any ℓ ∈ [k + 1], we need to consider
two cases, depending on j. If j ∈ V \ S, then by the same reasoning as before, the best
we could achieve is to have a dissatisfaction score equal to m− degV \S(j). But since p has
the maximum out-degree, this would yield a worse solution. Now suppose j ∈ S. Then
we know that dj has been deleted from Ij . Hence, the j-th block of vertex voters will be
dissatisfied with respect to Ij , and since L > m, this cannot yield an optimal solution. To
conclude, after the deletion of the selected alternatives, bp has to be selected for I0 in any
optimal solution.

For the reverse direction, suppose that there is a set D′′ of at most k alternatives, the
deletion of which, forces bp to be selected for I0 in every optimal solution. It is without
loss of generality to assume that D′′ does not contain anything from D0. To elaborate on
this claim, since there are k + 1 copies of alternatives for every i ∈ V \ {p} that have an
identical role, there is no change in the optimal outcome by deleting up to k alternatives
from I0 (some alternative will survive for every i). Moreover, we can assume that none of
the deleted alternatives equals dj for some issue Ij ̸= I0 since if it were, we can swap it with
dj without harming the cost of the optimal solution (one cannot strengthen the support of
bp in I0 by deleting dj for some j). Also, bear in mind that we are not allowed to delete
both dj and dj from an issue Ij , j ∈ [n], as there are no other choices left for Ij .

To summarize, the deleted alternatives must come from distinct issues among I1, . . . , In
and they all correspond to some dj for j ∈ [n]. It is now easy to observe that deleting
from V the set S formed by the vertices corresponding to these alternatives in D′′, makes p
the unique vertex of maximum out-degree in the induced subgraph of G. If not, there is a
vertex, say v ∈ V \S, with greater or equal out-degree. In that case, if we select bℓ

′
v for I0 for
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some arbitrary ℓ′, and dj for all issues Ij , for which dj has not been deleted, we will obtain
a solution with at most the same dissatisfaction score as the optimal solution that used bp.
Indeed, we will have fewer or equal dissatisfactions from the edge voters with respect to I0,
and also all the blocks of the vertex voters will be satisfied (the block of voters who care
about Iv is satisfied because dv has not been deleted, since v ∈ V \S). This contradicts the
fact that bp was elected for I0 in every optimal solution.

For the NP-hardness of caa-1, the proof is based on a similar reasoning as in the
proof of cda-1, but with appropriate adjustments. First, it is more convenient to perform
a reduction from a slightly different problem, which is the max-outdegree addition
(moa) problem defined and proved NP-hard in (Betzler & Uhlmann, 2009).

Instance: A directed graph G = (V1 ∪ V2, E), where V1 denotes the set of registered
vertices, and V2 is the set of unregistered vertices, a distinguished vertex p ∈ V1 and an
integer k ≥ 1.
Output: Does there exist a set V ′ ⊆ V2 with |V ′| ≤ k such that p is the only vertex that
has maximum outdegree in G[V1 ∪ V ′]?

Starting from an instance of moa, where n = |V1|+ |V2|, let I = {I0, I1, I2, . . . , In}. For
j ∈ V1, we have two qualified alternatives, Dj = {dj , dj} and no spoiler ones. For j ∈ V2,
we have one qualified alternative7, Dj = {dj}, and we will have dj as a spoiler alternative,
D′

j = {dj}. The domain of I0 corresponds to all the vertices and equals D0 = {b1, . . . , bn}.
In contrast to cdv-1, we do not need to have k + 1 “copies” for each bi, since the spoiler
alternatives that will be added are not going to be from D0. As for the voters, there is one
edge voter for every edge of the graph, regardless of whether its endpoints belong to V1 or
V2 and one vertex voter for every vertex of the graph. All voters have similar preferences
as in the cda-1 reduction, from which their ballots for each issue Ij with j ∈ {0, 1, . . . , n}
can be immediately obtained by replacing, {bℓj}∀ℓ∈[k+1] with bj . For example, an edge voter
arising from an edge (i, j) will vote for the combination {dj : bi} regarding I0. Using similar
arguments as in the proof for cda-1, we conclude that there is a way to add up to k vertices
and make p the unique vertex with maximum out-degree if and only if there is a set of at
most k alternatives to add in the caa-1 instance to fulfill controller’s will.

Notably, moving to a constant domain size, the considered problems, cda-1 and caa-1,
seem to behave differently, as the following result indicates.

Proposition 3. cda-1 can be solved in polynomial time, when ∆i ≤ 1 for every voter
i, the treewidth of the global dependency graph is constant and the domain size is also
constant for every issue.

Proof. Let q be the quota parameter and let Ij be the issue where the controller wants to
enforce a specific alternative. If q ≥ |Dj | − 1, then we can simply delete precisely all other
|Dj |− 1 alternatives of Ij so that the controller’s will is the only choice left. If q < |Dj |− 1,
this implies that q = O(1). Then we can check all possible ways of picking up to q items
from the available set of all alternatives of all issues (a polynomial in m). For every such
combination, and since the conditions of Theorem 1 hold, we can solve the remaining cms

7. If one wishes to avoid issues with unary starting domain, we can also add one dummy qualified alternative,
so that no issue is trivialized before the addition of any spoiler alternatives.
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instance and check if we can have the controller’s choice in every optimal solution, by solving
cms with and without the designated alternative.

Hence, a constant domain size makes a difference for cda-1 when we stick to the as-
sumptions from Section 3.1 on each ∆i and on the treewidth. For caa-1, we are not yet
aware if the same result holds (the proof arguments certainly do not go through), and we
leave this as an interesting open problem. However, we have established intractability, as
soon as we move to slightly richer instances with ∆i ≤ 2.

Theorem 14. caa-1 is NP-hard, when ∆i ≤ 2 for every voter i, even when the treewidth
of the global dependency graph is at most one and even for a binary domain size in every
issue.

Proof. Consider an instance P of vertex cover, asking if there is a cover of size at most k
in a graph G = (V,E), with |V | = n, |E| = m. We create an instance P ′ of caa-1 with n+1
issues I = {I0, I1, . . . , In}. The issue I0 has two qualified alternatives, D0 = {d0, d0}. Each
issue Ij for j ∈ [n] corresponds to a vertex od G, and has one qualified alternative, denoted
by dj , and one unqualified one denoted by dj . Formally, Dj = {dj} and D′

j = {dj}, for
j ∈ [n]. As for the voters, we have a total of 2m−1 voters. The first m voters correspond to
the edges of G, and they are satisfied with all the alternatives in the issues Ij , j ∈ [n]. For
issue I0, each edge voter has a dependence on the two issues corresponding to its endpoints.
In particular, for an edge (j, ℓ), the corresponding edge voter has a dependence of I0 on
both Ij and Iℓ. He is satisfied with respect to I0, only when either dj or dℓ is selected,
and d0 is selected as well. Thus he is satisfied with the combinations {(dj , x) : d0} for any
x ∈ {dℓ, dℓ}, and with {(x, dℓ) : d0} for any x ∈ {dj , dj}. These together encode precisely
the constraint (dj ∨ dℓ) : d0. Any other combination of alternatives of Ij , Iℓ, and I0 make
this edge voter dissatisfied with respect to I0. The remaining m − 1 dummy voters are
satisfied with all the alternatives of the first n issues and are also satisfied only with d0 for
issue I0. To complete the construction, we use k from P as the quota of P ′, and we assume
that the controller wants to enforce d0 on issue I0. It is easy to check that the maximum
in-degree for every voter is at most two, and that the global dependency graph is a star
centered on I0, and hence with treewidth equal to one.

Suppose that P has a vertex cover S of size at most k. We then add in P ′ the unqual-
ified alternatives for the issues that belong to the vertex cover of G. By selecting those
alternatives, and with d0 for I0, and any alternative for the remaining issues, we claim that
all the edge voters are satisfied with respect to I0 (since for every edge, at least one of the
added alternatives together with d0 satisfy the corresponding constraint). Thus, there is
only 1 unit of dissatisfaction from every dummy voter on I0, with a total score of m − 1.
Any solution where d0 is not the selected choice for I0 would dissatisfy all the edge voters,
and would have a score of at least m, hence cannot be optimal. Thus, we have ensured that
in every optimal solution, I0 is assigned the value of d0.

For the reverse direction, suppose that there is a set of at most k unqualified alternatives
that, when added, ensure that d0 is selected in every optimal solution. We know that
selecting d0 causes the dummy voters to be dissatisfied, hence the optimal dissatisfaction
score is at least m − 1. If d0 was chosen for I0, we know that the total dissatisfaction
score is m (due to the edge voters), and since this cannot be optimal, we have that the
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dissatisfaction score in an optimal solution is exactly m − 1. But this means that all the
remaining m voters, or equivalently all edge voters, have to be satisfied with all issues in the
optimal solution, i.e., satisfied with I0 as well. Thus, the added alternatives need to satisfy
every edge voter, which means that if a voter’s dependence of I0 is based on issues Ij and
Iℓ, then either dj or dℓ has been added (or both), and hence the set of added alternatives
correspond to a vertex cover of size at most k.

Overall, we end this subsection by concluding that cms is indeed sufficiently robust
against malicious actions, in most of the variants of the control problem considered. The
behavior regarding the addition or deletion of alternatives does exhibit differences with
that of deleting or adding voters. In some cases, such as in adding alternatives, we get
the stronger guarantee of immunity, compared to NP-hardness. On the other hand, when
deleting alternatives, we have vulnerability in more settings than when deleting voters. Still,
we do have computational hardness, when the domain size is large enough.

5. Conclusions and Further Work

Our work is centered around the cms rule, a relatively new and highly natural voting rule
for expressing preferential dependencies with approval-based conditional ballots in elections
over multiple interdependent issues. We focused on computational aspects of cms elec-
tions, from the perspective of the winner determination problem using exact (polynomial
and parameterized) and approximate algorithms, as well as from the perspective of strate-
gic attempts to control election outcomes. We conclude that cms provides a satisfactory
tradeoff between expressiveness and efficiency under certain assumptions and at the same
time exhibits sufficient robustness against control actions in the considered settings.

There are still several interesting problems for future research. It is conceivable that
approximation guarantees can be obtained for instances with higher expressiveness (i.e.,
higher in-degrees) than those considered in Section 3.2. Additionally, one can also consider
other objective functions, such as the Conditional Minimax rule, defined also in (Barrot &
Lang, 2016), for which, algorithmic results remain elusive. In principle, one can take any
other voting rule defined for approval ballots and explore potential generalizations in the
setting with conditional approval ballots, as done for instance in (Brill, Markakis, Papa-
sotiropoulos, & Peters, 2023) with Proportional Approval Voting rule (PAV) and Method
of Equal Shares (MES). Furthermore, from a strategic point of view, there is one case of
our control questions that has been left open, namely, the complexity of caa-1, under a
binary domain size and with ∆i ≤ 1. Even more interestingly, one can study other strate-
gic moves such as destructive versions of control or bribery in a cms election, or consider
a study on instances that are not worst-case. Along the same spirit, cms was proven to
be non-strategyproof by (Barrot & Lang, 2016), but the complexity of manipulating has
not been examined yet. Finally, as highly critical areas of future work, we emphasize the
importance of obtaining real or synthetic data on elections over interdependent issues (cur-
rently nonexistent in public preference data libraries such as (Mattei & Walsh, 2013)) and
of generating experimental results that could complement our theoretical findings.
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Cuhadaroglu, T., & Lainé, J. (2012). Pareto efficiency in multiple referendum. Theory and
Decision, 72 (4), 525–536.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., & Saurabh, S. (2015). Parameterized Algorithms. Springer.

Dalla Pozza, G., Pini, M. S., Rossi, F., & Venable, K. B. (2011). Multi-agent soft constraint
aggregation via sequential voting. In Proceedings of the International Joint Conference
on Artificial Intelligence, pp. 159–191.

Davies, J., Katsirelos, G., Narodytska, N., & Walsh, T. (2011). Complexity of and algo-
rithms for borda manipulation. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 657–662.

Demange, M., Grisoni, P., & Paschos, V. T. (1998). Differential approximation algorithms
for some combinatorial optimization problems. Theoretical Computer Science, 209 (1-
2), 107–122.

Endriss, U. (2013). Sincerity and manipulation under approval voting. Theory and Decision,
74, 335–355.

Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. A. (2011). Multimode control
attacks on elections. Journal of Artificial Intelligence Research, 40, 305–351.

Faliszewski, P., & Rothe, J. (2016). Control and bribery in voting.. In Handbook of Com-
putational Social Choice, pp. 146–268. Cambridge University Press.

38



Freuder, E. (1990). Complexity of k-tree structured constraint satisfaction problems. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4–9.

Freuder, E. C., & Wallace, R. J. (1992). Partial constraint satisfaction. Artificial Intelli-
gence, 58 (1-3), 21–70.

Garg, N., Vazirani, V. V., & Yannakakis, M. (1996). Approximate max-flow min-(multi)
cut theorems and their applications. SIAM Journal on Computing, 25 (2), 235–251.

Goldstein, A., Kolman, P., & Zheng, J. (2005). Minimum common string partition problem:
Hardness and approximations. Electronic Journal of Combinatorics, 12.

Gottlob, G., & Szeider, S. (2008). Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction and database problems. The Computer Journal, 51 (3), 303–
325.

Grandi, U., & Endriss, U. (2010). Lifting rationality assumptions in binary aggregation. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 780–785.

Grohe, M. (2007). The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM, 54 (1), 1–24.

Grohe, M., Schwentick, T., & Segoufin, L. (2001). When is the evaluation of conjunctive
queries tractable?. In Proceedings of the Symposium on the Theory of Computing, pp.
657–666.

Gupta, S., Roy, S., Saurabh, S., & Zehavi, M. (2022). Resolute control: Forbidding candi-
dates from winning an election is hard. Theoretical Computer Science, 915, 74–89.

Hemaspaandra, E., Hemaspaandra, L. A., & Rothe, J. (2007). Anyone but him: The com-
plexity of precluding an alternative. Artificial Intelligence, 171 (5-6), 255–285.

Jain, P., Sornat, K., & Talmon, N. (2020). Participatory budgeting with project interactions.
In Proceedings of the International Joint Conference on Artificial Intelligence, pp.
386–392.

Kilgour, D. M. (2010). Approval balloting for multi-winner elections. In Handbook on
Approval Voting, pp. 105–124. Springer Science & Business Media.

Klein, P. N., Plotkin, S. A., Rao, S., & Tardos, E. (1997). Approximation algorithms for
steiner and directed multicuts. Journal of Algorithms, 22 (2), 241–269.
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Laffond, G., & Lainé, J. (2009). Condorcet choice and the Ostrogorski paradox. Social
Choice and Welfare, 32 (2), 317–333.

Lang, J., Mengin, J., & Xia, L. (2018). Voting on multi-issue domains with conditionally
lexicographic preferences. Artificial Intelligence, 265, 18–44.

39



Lang, J., & Xia, L. (2009). Sequential composition of voting rules in multi-issue domains.
Mathematical Social Sciences, 57 (3), 304–324.

Lang, J., & Xia, L. (2016). Voting in combinatorial domains. In Handbook of Computational
Social Choice, pp. 197–222. Cambridge University Press.

Laslier, J.-F., & Sanver, M. R. (2010). Handbook on approval voting. Springer Science &
Business Media.

Liu, H., Feng, H., Zhu, D., & Luan, J. (2009). Parameterized computational complexity
of control problems in voting systems. Theoretical Computer Science, 410 (27-29),
2746–2753.

Markakis, E., & Papasotiropoulos, G. (2020). Computational aspects of conditional min-
isum approval voting in elections with interdependent issues. In Proceedings of the
International Joint Conference on Artificial Intelligence, pp. 304–310.

Markakis, E., & Papasotiropoulos, G. (2021). Winner determination and strategic control
in conditional approval voting. In Proceedings of the International Joint Conference
on Artificial Intelligence, pp. 342–348.

Marx, D. (2010). Can you beat treewidth?. Theory of Computing, 6, 85–112.

Mattei, N., & Walsh, T. (2013). Preflib: A library for preferences http://www. preflib. org.
In International Conference on Algorithmic Decision Theory, pp. 259–270.

Meir, R., Procaccia, A. D., Rosenschein, J. S., & Zohar, A. (2008). Complexity of strategic
behavior in multi-winner elections. Journal of Artificial Intelligence Research, 33,
149–178.

Rey, S., Endriss, U., & de Haan, R. (2023). A general framework for participatory budgeting
with additional constraints. Social Choice and Welfare, 1, 1–37.

Robertson, N., & Seymour, P. D. (1986). Graph minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms, 7 (3), 309–322.

Samer, M., & Szeider, S. (2010). Constraint satisfaction with bounded treewidth revisited.
Journal of Computer and System Sciences, 76 (2), 103–114.

Vazirani, V. V. (2003). Approximation algorithms. Springer Science & Business Media.

Weber, R. (1978). Comparison of public choice systems. Cowles Foundation Discussion
Papers, 732.

Williamson, D. P., & Shmoys, D. B. (2011). The Design of Approximation Algorithms.
Cambridge University Press.

Xia, L., & Conitzer, V. (2012). Approximating common voting rules by sequential voting
in multi-issue domains. In Proceedings of the International Symposium on Artificial
Intelligence and Mathematics.

Yang, Y. (2019). Complexity of manipulating and controlling approval-based multiwinner
voting. In Proceedings of the International Joint Conference on Artificial Intelligence,
pp. 637–643.

40


