
Relating graph auto-encoders to linear models

Solveig Klepper
solveig.klepper@uni-tuebingen.de

Ulrike von Luxburg
ulrike.luxburg@uni-tuebingen.de

Department of Computer Science
University of Tübingen

ABSTRACT

Graph auto-encoders are widely used to construct graph representations in Euclidean vector spaces.
However, it has already been pointed out empirically that linear models on many tasks can outperform
graph auto-encoders. In our work, we prove that the solution space induced by graph auto-encoders is
a subset of the solution space of a linear map. This demonstrates that linear embedding models have at
least the representational power of graph auto-encoders based on graph convolutional networks. So why
are we still using nonlinear graph auto-encoders? One reason could be that actively restricting the linear
solution space might introduce an inductive bias that helps improve learning and generalization. While
many researchers believe that the nonlinearity of the encoder is the critical ingredient towards this end,
we instead identify the node features of the graph as a more powerful inductive bias. We give theoretical
insights by introducing a corresponding bias in a linear model and analyzing the change in the solution
space. Our experiments are aligned with other empirical work on this question and show that the linear
encoder can outperform the nonlinear encoder when using feature information.

1 Introduction
Many real-world data sets have a natural representation in terms of a graph that illustrates relationships or interactions
between entities (nodes) within the data. Extracting and summarizing information from these graphs is the key problem
in graph learning, and representation learning is an important pillar in this work. The goal is to represent/encode/embed
a graph in a low-dimensional space to apply machine learning algorithms to solve a final task.
In recent years neural networks and other approaches that automate learning have been employed as a powerful
alternative to leverage the structure and properties of graphs [Tang et al., 2015, Grover and Leskovec, 2016, Ribeiro
et al., 2017, Dong et al., 2017, Hamilton et al., 2017a, Chamberlain et al., 2017, Cao et al., 2016, Wang et al., 2016,
Chang et al., 2015]. For example, Hamilton et al. [2017b] review key advancements in this area of research, including
graph convolutional networks (GCNs). Graph auto-encoders (GAEs), first introduced in Kipf and Welling [2016b],
are based on a graph convolutional network (GCN) architecture. They have been heavily used and further refined for
representation learning during the past couple of years (see Li et al. [2021], Pan et al. [2018], Vaibhav et al. [2019],
Davidson et al. [2018], to name a few). Recently, Salha et al. [2020] discovered that the original GAE architecture,
which has been used as a basis for several enhancements, can be outperformed by simple linear models on an exhaustive
set of tasks. The equivalence or even superiority of (almost) linear models has also been empirically shown for standard
GCN architectures for link prediction and community detection [Wu et al., 2019]. The question arises as to why we still
use and improve these models when simpler models with comparable performance exist. What is the theoretical relation
between linear and nonlinear encoders, and does the empirical work provide a reason to replace graph convolutional
networks with linear equivalents? In this paper, we contribute to understanding the underlying inductive bias of the
graph auto-encoder model.
Contributions: (1) We draw a theoretical connection between linear and non-linear encoders and prove that, under
mild assumptions, for any function f(A,X) on a graph, there exists a linear encoder that can achieve the same training
loss. We use this result to show that the representational power of relu encoders is, at most, as large as the one of linear
encoders. (2) We investigate the bias that is relevant for good generalization and give theoretical insights into how
features influence the solution space of a linear model. (3) We empirically find that the nonlinearity in the relu encoder
is not the critical ingredient for generalization. Indeed we discover that if the graph features are taken into account
appropriately, the linear model outperforms the relu model test data.

1

ar
X

iv
:2

21
1.

01
85

8v
2

 [
cs

.L
G

]
 3

0
N

ov
 2

02
3

H=relu(ÃXW(0)) Z=ÃHW(1)

Z=ÃXW

H(1) Z

encoder decoder

 âij = σ(zi zj
T)

xk zk

â11

ânn

â1n

ân1

H(0)=X

hk

[n x g] [n x h] [n x d]
Â

[n x n]

latent
representation

original graph recovered
graph

A X
[n x n] [n x g]

linear

relu
 âij = σ(zi zj

T)

â11

ânn

â1n

ân1

xk = (0.1,, 0.9)

xk

Figure 1: The architecture of a linear auto-encoder and a relu auto-encoder. The only difference is the encoder function:
The linear encoder is a simple linear map, whereas the relu encoder is a two-layer GCN network with relu activation in
the first layer and linear output activation. In both cases, the input is the graph (A,X). H(1) is the hidden layer of the
GCN. A row in the matrix Z gives the latent representation of the respective row/node in the input matrix X . In both
cases the decoder is the inner product, and the target is to recover the adjacency matrix A.

2 Preliminaries
We consider a connected, unweighted and undirected graph G with adjacency matrix A ∈ {0, 1}n×n and a feature
matrix X ∈ Rn×g . The feature matrix X contains g-dimensional feature vectors that describe additional properties of
each node of the graph. For example, if the graph consists of a social network, the features could describe additional
properties of the individual persons, such as age and income. If we do not have any feature information for the nodes
(“featureless graph”), then we set X as the n× n identity matrix. We always assume that all nodes are connected to
themselves, that is, aii = 1 for all i. We call D ∈ Nn×n the degree matrix with diagonal entries dii =

∑n
j=1Aij and 0

everywhere else, and Ã = D−1/2AD−1/2 the symmetrically normalized adjacency matrix.
Graph convolutional networks. Inspired by convolutional neural networks, graph convolutional networks (GCNs,
Kipf and Welling [2016a]) are one of the most widely used graph neural network architectures. The input consists
of a graph (A,X). The graph convolution is applied to a matrix Ã that encodes the adjacency structure of the graph.
This matrix Ã, called diffusion matrix, is the symmetrically normalized adjacency matrix in our case but could be
replaced by any matrix encoding the graph structure, for example, the graph Laplacian. In each layer of the network,
a node in the graph updates its latent representation, aggregating feature information within its neighbourhood, and
learns a low-dimensional representation of the graph and its features. More precisely, in layer l, each node update
is some function of the diffusion of the weighted features: H(l+1) = ψ(ÃH(l)W (l)) with learnable weights W (l),
(nonlinear) activation function ψ and H(0) as the feature matrix X . The output of the GCN for each node in the graph
is a d-dimensional vector representing this node’s embedding. This representation can be used for downstream tasks
such as node or graph classification or regression.
Graph auto-encoders. Graph auto-encoders aim to learn a mapping of the graph input (A,X) to an embedding
Z ∈ Rn×d. This embedding is optimized such that, given a decoder, we can recover the adjacency matrix A from the
embedding. As visualized in Figure 1, the encoder consists of a two-layer graph convolutional network with no output
activation and hidden layer with size h ∈ N. The decoder is a simple dot product:

Zrelu = GCN(X,A) = Ã relu(ÃXW (0))W (1)︸ ︷︷ ︸
encoder

, Ârelu = σ(ZreluZ
T
relu)︸ ︷︷ ︸

decoder

. (1)

Here Zrelu ∈ Rn×d is the latent space representation with embedding dimension d, and the matrix Â is the reconstructed
adjacency matrix. Note that Â is a real-valued matrix that aims to capture the likelihood of each edge in the graph. To
obtain a binary adjacency matrix as a final result, we discretize by thresholding the values at 0.5. The loss function
optimized by the auto-encoder is the cross-entropy between the target matrix A and the reconstructed adjacency matrix
Â. It is minimized over the encoder’s parameters W (l). The decoder is a deterministic function and is not learned from
the data. For a graph with adjacency matrix A, latent space embedding Z, and with σ(·) denoting the sigmoid function,

2

the loss is formalized as follows:

lA(Z) =

n∑
ij=1

aij log(σ(ziz
T
j)) + (1− aij)(1− log(σ(ziz

T
j))). (2)

Below we compare GAEs based on a relu encoder with a simplified model based on a linear encoder.

3 Relu encoders have at most the representational power of linear encoders
Graph auto-encoders are widely used for representation learning of graphs. However, it has also been observed that
linear models outperform them on several tasks. In this section, we investigate this empirical observation from a
theoretical point of view. We define a graph auto-encoder that uses a simple linear map as the encoder and prove that the
derived model has larger representational power than a relu encoder. To this end, we introduce a linear encoder based
on a linear map of the diffusion matrix Zlin = ÃW , where Zlin is the latent space representation. The loss function and
the decoder remain as in the relu model. For a relu encoder, the dimension h of the hidden layer satisfies g > h > d (for
the linear encoder, the parameter h does not exist). We now define the solution spaces to help us describe the respective
models’ behavior. They will represent the embeddings that can be learned by relu and linear encoders, both with and
without node features and more general functions on graphs:

Zlin = {Z ∈ Rn×d|Z = ÃW for W ∈ Rn×d}
Zlin,X = {Z ∈ Rn×d|Z = ÃXW for W ∈ Rg×d}

Zrelu = {Z ∈ Rn×d|Z = Ã relu(ÃW (0))W (1) for W (0) ∈ Rn×h,W (1) ∈ Rh×d}
Zrelu,X = {Z ∈ Rn×d|Z = Ã relu(ÃXW (0))W (1) for W (0) ∈ Rg×h,W (1) ∈ Rh×d}

Zf = {Z ∈ Rn×d|Z = f(Ã,X; θ) for θ ∈ Θ}.

Here f can be any parameterized function on a graph f : Rn×n × Rn×g × Θ → Rn×d and Θ can be an arbitrary
set of parameters. It is easy to see that Zlin,X ⊆ Zlin. In words: when we compare two linear encoders, one with
node features and one without node features, the one with node features has a more restricted solution space. The
reason is that the feature matrix X is at most rank g and typically has a low rank compared to the diffusion matrix Ã,
which restricts the image of ÃX . The same holds for the relu encoder: Zrelu,X ⊆ Zrelu. The relation between the
linear encoder and the relu encoder is less obvious. One might guess that the relu encoder can learn more mappings
than a linear encoder. However, we now show that this is not the case: we will see that Zlin ⊇ Zrelu, focusing on
the featureless model. This relation implies that the linear encoder has a larger representational power than a relu encoder.

While this paper focuses on a specific architecture that has been introduced in previous work and is heavily used in
practice, some of our insights extend to any encoder function f under mild assumptions on the input graph. Thus, we
first state our result in a more general way. We make the following assumptions:

Assumption 1. The number of nodes n is larger than the feature dimension g.

Assumption 2. The rank of the diffusion matrix Ã is larger than or equal to the embedding dimension d.

Assumption 3. The loss-function l is invariant to orthogonal transformations, that is, lA(Z) = lA(RZ) for any
orthogonal matrix R.

• Assumption 1 is typically fulfilled in practice. Vertices are typically described by a moderate number of features.
Especially for larger graphs, this is a weak assumption.
• Assumption 2 is usually satisfied because the embedding dimension is a choice, and a graph auto-encoder aims to find
a low-dimensional representation. We can also think about this assumption in the context of the informational content
of our data. If the input matrix is of low rank, it holds little information; we will not gain information by embedding it
into a higher dimensional space. Setting the embedding dimension d smaller than the rank of the input matrix rank(Ã)
makes sense.
• Assumption 3 is fulfilled in the graph auto-encoder setting; the loss given in Equation 2 is based on pairwise distances
given by the dot-product. This loss is invariant to orthogonal transformations. Generally, one could construct loss
functions not invariant to orthogonal transformations. However, orthogonal transformations usually preserve pairwise
metrics, and as a result, all loss functions based on a decoder incorporating pairwise distances will also be invariant to
orthogonal transformations.
To prove our main theorem, we first observe that given Assumption 2, for any set P of n points in a d-dimensional
subset of Rn, we can find an orthogonal transformation that maps the span of A so that it contains all points in P .

3

Lemma 4. For P ∈ Rn×d, A ∈ Rn×m with rank(P) ≤ rank(A), there exists an orthogonal matrixR with span(P) ⊆
span(RA).
We can now prove that the linear model can outperform any other function f on the graph G during training.

Theorem 5 (Minimal Loss). Consider a fixed graph G = (A,X). Let Ã be the diffusion matrix of G and let
Z ∈ {Z ∈ Rn×d | Z = f(A,X; θ) for ∈ Θ} be any latent space representation of any graph function f(A,X; θ). Let
l be a loss function and assume that Assumptions 1-3 are satisfied. Then the linear model can find a a latent space
representation with loss at least as good as the relu encoder.

Proof. With Lemma 4 it holds that for any Z ∈ Rn×d and any matrix Ã ∈ Rn×m with rank(Ã) ≥ rank(Z), there
exists an orthogonal matrix R ∈ Rn×n such that all points in latent space representation Z are in the image of RÃ:

∃R orthogonal s.t. {RÃW |W ∈ Rm×d} ⊇ {Z | Z = f(A,X; θ) ∈ Rn×d}.

This implies that there exists a weight matrix W ∈ Rm×d with l(Z) = l(RÃW) = l(ÃW). In other words, the
minimal loss over the set of possible solutions that is learnable by the linear model is smaller or equal to any loss over
the solution space achievable by the function f :

inf{l(Zf) | Zf ∈ Zf} ≥ inf{l(Zlin) | Zlin ∈ Zlin}

Theorem 5 considers a quite general statement. The graph auto-encoder architecture is one particular instance of a
function f . Given the specific architecture of the auto-encoder we can show that the solution space of the relu-encoder
is contained in the solution space of the linear model.

Corollary 6 (Representational power of GAEs). For any (trained) graph auto-encoder in Zrelu ⊇ Zrelu,X , there
exists an equivalent, featureless linear encoder in Zlin that can achieve the same training loss because we have
Zlin ⊇ Zrelu.

We refer to Appendix A for the proof. Note that if we assume that rank(AF) > d, then the rank of AF is larger than
the embedding dimension d. Theorem 5 and Corollary 6 hold for the solution space of the linear model, including
features: Zlin,X. We discuss the influence of the features on the representational power of the linear model in Section 4.
Corollary 6 has a simple but strong implication: in principle, the (featureless) linear model is more powerful than
the traditional GAE (with or without features). Here “more powerful” means that the linear model can achieve better
training loss.

The issue of representational power. Note that we do not claim that

{f : Rn×g → Rn×d | f(A,X) is any nonlinear GNN} ⊆ {f : Rn×g → Rn×d | f(A,X) = AW for W ∈ Rg×d},

which would mean that the function class of linear models contains the function class of nonlinear models. However,
in the setting of a graph neural network, we usually have a single graph as an input with a fixed number of nodes n.
In this setting, the goal is to find an embedding of this fixed graph. Our result says that Zf ⊆ Zlin and in particular
Zrelu,X ⊆ Zrelu ⊆ Zlin. In words: The solution space of the nonlinear model is contained in the solution space of the
linear one, showing that the representational power of the linear model is larger than the one of the nonlinear model.

Generalization properties. Note that Corollary 6 does not claim that the linear model without features outperforms the
relu model. This corollary only considers the training loss. Thus we can not derive anything about the test performance
or the solution that an optimization algorithm might find. So far, we are just consider training loss and the existence of a
weight matrix W . From the above discussion, it is apparent that the linear encoder is less restricted, which means that it
introduces a weaker inductive bias than the relu encoder. Note that this is independent of the fact that we used the relu
activation function or the depth of the convolutional network. Regarding the test performance, the question is whether
the restriction that the relu encoder puts on the solution space induces a “good” inductive bias that helps improve the
model’s test error. As we see below, we empirically find that when using features, a relu encoder does outperform
the (featureless) linear encoder on test data. The relu activation and the features both restrict the solution space and
introduce an inductive bias. Next, we investigate which of these two ingredients helps to restrict the representational
power in a meaningful way.

4

4 The inductive bias of adding features
This section investigates how features influence the solution space of the linear model and the inductive bias that we
introduce by adding features. While Corollary 6 shows the superior representational power of the linear model without
features, in Section 5, we will observe improved test performance for models that do use feature information. Whenever
the features are low rank compared to the diffusion matrix, they restrict the solution space and introduce an inductive
bias that facilitates learning and can improve generalization if they hold helpful information. We observe this behaviour
for both considered architectures, the relu and the linear encoder. Consequently, we conjecture that the presence of
features, and not the relu nonlinearity, introduces the necessary bias to restrict the solution space in a meaningful
way. However, some care is needed. As we will see, adding features can also harm performance if they contradict
the structure of the target graph. In order to quantify the harm, we derive a measure for misalignment between graph
structure and feature information. Based on this, we give theoretical insights about the restriction of the solution space
when including features in the linear model.
Intuitively, we want to call a graph A and the corresponding features X “aligned” if they encode “similar” information.
In our setting, this would be the case if A is “close to” XXT: considering the features X ∈ Rn×g as node embeddings,
the matrix XXT reconstructed adjacency matrix in a similar way as the dot product decoder. In other words, nodes
should be close together in the feature space if and only if an edge connects them. Since the adjacency matrix is
symmetric, a decomposition A = Y Y T for Y ∈ Cn×n always exists. The error that we might introduce by adding
features then comes from the fact that XXT is a (low rank) approximation of Y Y T = A: Even for perfectly aligned
features, the feature dimension g is typically much smaller than n. Note that if we consider one graph and two different
feature matrices with the same span, both features restrict the solution space in the same way and give rise to the same
optimal embedding:

Proposition 7 (Features with the same span induce the same solution space). Let Ã ∈ Rn×n be the diffusion
matrix of a fixed graph and U,F ∈ Rn×g two different feature matrices for this graph. If span(U) = span(F), then
Zlin,U = Zlin,F .
Intuitively, this means that if U and F span the same space, the corresponding models can, in principle, learn the same
mappings and output the same embeddings.

Proof. We show that for every weight matrix WU with Z = ÃUWU , there exists a weight matrix WF with Z =
ÃFWF . From span(U) = span(F) it follows that span(ÃU) = span(ÃF). We define corresponding linear maps
fU , fF : Rd → Rn with fU (x) = ÃUx and fF (x) = ÃFx. Since Im(fU) = Im(fF) we know that every point
fU (x) = y has at least one pre-image in fF . Let WU = [wU1 , ..., wUd

] and Z = [z1, ..., zd] be such that zi = fU (wUi).
For every zi there exists at least one wFi

with fF (wFi
) = zi = fU (wUi

). Since this holds for any matrix WU we can
conclude that Zlin,U = Zlin,F .

We have seen that two different feature matrices with the same span restrict the solution space equivalently. Next,
we derive a condition for the alignment between features X and graph structure Ã that quantifies when features are
potentially helpful. To do so, we investigate two settings. In the first setting, the features align with the graph structure
and can introduce a valuable restriction of the solution space. In the second setting, the features contradict the graph
structure and restrict the solution space in such a way that the optimal embedding can no longer be recovered. The
intuition for helpful features corresponds with the one for good embeddings: If points are connected in the graph, they
should have similar feature vectors. Consequently, if we were not to embed the nodes into a low-dimensional space
but were simply interested in any latent representation of the graph, the features themselves would represent desirable
embeddings.

Proposition 8 (Features cannot hurt if they perfectly align with the graph structure). Let X be the feature matrix
of the graph with diffusion matrix Ã and let the embedding dimension coincide with the feature dimension g. If
Im(ÃX) = Im(X), then there exists a weight matrix W with X = ÃXW .
This proposition shows that if Im(Ã) = Im(ÃX), then the model can recover the features.

Proof. Since ÃX and X span the same subspace, we can find a w2 for any w1 with Xw1 = ÃXw2 and w1, w2 ∈ Rg .
We interpret every column in a matrix as an independent vector to derive that for any matrix W1 we can find a matrix
W2 with XW1 = ÃXW2 and W1,W2 ∈ Rg×g .

The proposition suggests that if the features encode the same structure as the graph’s adjacency matrix, they do not
negatively restrict the solution space. We now consider the opposite case: if the node relations encoded by their features
contradict the adjacency structure of the graph, we can neither recover the features nor the adjacency matrix. In this
setting, features restrict the function space in a harmful way, preventing the easiest and trivially optimal embedding.

5

From these observations, we then derive a definition to measure the alignment between a graph’s structure and node
features.

Proposition 9 (Features can hurt if they do not align with the graph structure). Let X be the graph’s feature
matrix, and assume that the embedding dimension coincides with the feature dimension, d = g. Let Ã be the diffusion
matrix and let Y ∈ Rn×d be a matrix such that Ã = Y Y T . Assume that the graph can be perfectly represented in g
dimensions, that is, there exists a Z ∈ Rn×g with ZZT = Ã. Let rank(Y) = rank(Ã) = g.

1. If Im(ÃX) ̸= Im(X), then there exists no weight matrix W with X = ÃXW .

2. If Im(ÃX) ∩ Im(X)⊥ ̸= ∅, then there exists no weight matrix W with Y = ÃXW .

The intuition is that if the adjacency matrix and the node features define two different structures, then neither of the
structures can be encoded by the linear model. The alignment of the structures is captured by the condition on the
image of ÃX and X .
Proof of Part 1. We prove the contraposition: If there exists a weight matrix W with X = ÃXW then
Im(ÃX) = Im(X). Let Ã ∈ Rn×n and let X ∈ Rn×g be full rank. Let W be such that X = ÃXW . Since X is full
rank, the rank of W is full and thus Im(X) = Im(ÃXW) = Im(ÃX). 2

Proof of Part 2. For Y = ÃXW = Y Y TXW to hold we need W to be the g × g inverse of (Y TX). We
prove that if Im(ÃX) ∩ Im(X)⊥ ̸= ∅, then Y TX ∈ Rg×g is of rank smaller g and thus not invertible. We again
prove the contraposition: If XTY is full rank then Im(ÃX) ∩ Im(X)⊥ = {0}. Note that Y TX is full rank by
assumption and thus: Im(ÃX) = Im(Y Y TX) = Im(Y). Generally it holds that Im(X)⊥ = ker(XT). Let
w ∈ Im(Y) ∩ ker(XT). Since w is in Im(Y) there exists a v ∈ Rd with w = Y v. Since w in ker(XT), it fol-
lows thatXTY v = XTw = 0. This implies v = (XTY)−10 = 0 and thusw = 0 and thus Im(Y)∩ker(XT) = {0}. 2

Note that the dot product is invariant under orthogonal transformations; thus, for the features, every orthogonal
transformation can be absorbed in the weight matrix. Proposition 9 also holds for orthogonally transformed features and
embeddings. Thus given the dot-product as a decoder there is no other embedding Ỹ ̸= Y that recovers the adjacency
structure of the graph.

Based on all these insights, we propose a misalignment definition between a graph and its node features. Intuitively, we
want to say that A and X are misaligned if ÃX and X do not span the same subspace.

Definition 10 (Misalignment of graph and features). Let Ã be the symmetrically normalized adjacency matrix and
X̃ the normalized feature matrix such that each column has l2-norm 1. We measure misalignment of a graph A and its
features X using the distance dalgn : Rn×n × Rn×g → R, where the arccos function is applied to every entry in
the matrix:

dalgn(A,X) 7→ Tr(arccos(ÃX̃X̃T)).

We got inspired to this measure by the geodesic distance on the Grassmannian manifold, which measures the principal
angles of two subspaces AX and X . If dalgn is low, the alignment between A and X is high. It is easy to see that with
this formulation, dalgn(A,X) = 0 if A = XXT . This is consistent with our intuition that the features and structure of
the graph are perfectly aligned if they encode the same structure.
The generalization error of linear encoders is task dependent. Learning and generalization can only work if the
learning architecture encodes the correct bias for the given task. We now consider two tasks to demonstrate the negative
and positive impact of the bias that we introduce when using features.
In recent work, the most common task is link prediction. For this task we consider a graph given by its adjacency
matrix A ∈ {0, 1}n×n and a feature matrix X ∈ Rn×g. We construct a train graph Ā by deleting a set of edges from
the graph, which we later, during test time, would like to recover. We train to minimize the loss l(Ā,X), while the test
loss is given by l(A,X). In our opinion, link prediction is a somewhat strange task when talking about generalization.
We assume that the input graph is incomplete or perturbed. During training, we optimize the GAE for an adjacency
matrix that we do not wish to recover during test time (because we also want to discover the omitted edges). However,
this cannot be encoded in the loss of the auto-encoder (compare Eq. (2)). For the encoding to discover the desired
embedding, the necessary bias to prevent the model from optimally fitting the training data must be somewhere else in
the model. We claim that the features introduce this necessary bias, and we evaluate the link prediction task because it
is so prominent in the literature.

6

We consider a second task, node prediction. For this task, the is graph given by its adjacency matrix A ∈ {0, 1}n×n

and the feature matrix X ∈ Rn×g . We construct a train graph Ā, X̄ by deleting a set of nodes from the graph A and the
corresponding features from the feature matrix X . We train to optimize l(Ā, X̄). We then compute the test loss on the
larger graph A,X: l(A,X) with the goal of predicting the omitted nodes. The goal is to learn a mapping from the input
graph to the latent space that generalizes to new, unseen vertices.
Intuitively it is clear that, depending on the task, the usefulness of the introduced bias might vary. We empirically
evaluate the influence of features and compare the performance of the linear and the nonlinear encoder with and without
the bias of features.

5 Empirical evaluation
In this section, we evaluate the influence of node features and the role of their alignment both for linear and relu
encoders. We will see that the results support the theory that linear encoders outperform relu encoders.
Setting. We consider two models for empirical evaluation. The first is the relu encoder defined in Equation (1) based on
the implementation of Kipf and Welling [2016b], and the second is the linear encoder. Since the relu encoder has two
layers and thus two weight matrices, we realize the weights for the linear model accordingly: Zlin = ÃXW (0)W (1).
This definition does not contradict the one from above; we can simply choose W = W (0)W (1). Regarding the
representational power of the model, this makes no difference. However, from an optimization perspective, it can
influence the training (see Saxe et al. [2013]), and we aim to compare the models as fair as possible. We use the
same objective function as Kipf and Welling [2016b], weighting the edges to tackle the sparsity of the graph and
regularizing by their mean squared norm to prevent the point embeddings from diverging. We train using gradient
descent and the Adam optimizer for 200 epochs. Due to sparsity, the accuracy of the recovered adjacency matrix is not
very insightful. As is done in previous work, we measure the performance of the auto-encoders by the area under the
receiver operating characteristic curve (AUC). To get a representative metric we use all present (positive) edges from
the graph and uniformly sample the a number of what we call ‘negative’ edges, that is, edges that are not present in the
graph’s adjacency matrix. As a result, we only use some of the entries of the adjacency matrix for evaluation and get
a balanced set of present and non present edges in the graph. To get representative results, we run every experiment
10 times. In real-world datasets, we randomize over the test set, drawing different edges or nodes each time. For the
synthetic datasets, we draw ten independent graphs from the same generative model described below, then construct the
test and train sets on these.
Datasets. We use the following generative model to get a synthetic dataset with aligned features. We draw n = 1000
data points from a standard Gaussian distribution in g = 64 dimensions. We normalize the points to lie on the unit
sphere and store their coordinates in a feature matrix X ∈ Rn×g. We then construct the graph by thresholding the
matrix XXT to get a 0-1-adjacency matrix of density between 0.01 and 0.02. With this construction, the feature
matrix and the graph adjacency matrix are as aligned as possible, given the dimensional restriction. We generate
data that simulates misalignment as follows. We aim to construct features that overlap in d dimensions with the
graph’s optimally aligned, true features. Recall that changing the span does not restrict the solution space, so we
can replace the features with any other basis of the same space. The feature matrix X is spanned by {u1, ..., ug}.
We construct a perturbed feature matrix Xperturbed that has the same rank as X and spans the first d dimensions of
the space; span(u1, ..., ud), but is orthogonal to the remaining space; span(ud+1, ..., ug). We do so by calculating
the singular value decomposition X = UΣV T, then choose the first d columns and the last g − d columns from U .
Let U = [u1, ..., un], we set Xperturbed = [u1, ..., ud, un−(g−d), ..., un]. Note that the vectors un−(g−d), ..., un lie
completely in the orthogonal complement of span(u1, ..., ug), which means that the span of the optimal features X and
the perturbed features Xperturbed overlap in exactly d dimensions. We calculate the misalignment between the graph A
and the perturbed features Xperturbed as in Definition (10). By this construction, we do not fix the degree of rotation
of the non-overlapping dimensions. As a result, the misalignment values for an overlap of a specified dimension d
can vary slightly in different runs. However, as we normalize the values with regard to the dimensions, we still get
insights for quantitative comparison. For example, we get a misalignment value dalgn of about 0.92 for an overlap of
32 dimensions on the synthetic dataset with 64 dimensions overall. This corresponds to an overlap of approximately
50% of the dimensions. We get a misalignment value dalgn of approximately 1.11 for an overlap of 16 dimensions,
corresponding to an overlap of approximately 25% of the dimensions.
As real world datasets we consider three standard benchmarks: Cora , Citeseer , and Pubmed. Similar to previous
work, we embed the nodes into 16 dimensions when considering the link prediction task. For the node prediction task,
embedding into 16 dimension turns out to be too simple a task. We thus use 4 as the embedding dimension. For graph
statistics of all used datasets and more details on the experimental setup, see Appendix B.
When features help for link prediction. In Figure 2, we plot the AUC performance of both encoder variants, relu and
linear, both with and without features, on the link prediction task. We observe that both models’ test performances

7

0.
62

0.
92

1.
11

1.
22

1.
23

1.
28

1.
31

fe
at

ur
e

le
ss

normalized misalignment

0.5

0.6

0.7

0.8

0.9

1.0
A

U
C

GCN

test performance
train performance

0.
62

0.
93

1.
11

1.
22

1.
24

1.
28 1.

3

fe
at

ur
e

le
ss

normalized misalignment

linear

64 32 16 8 4 2 0

overlapping dimensions d

64 32 16 8 4 2 0

overlapping dimensions d

Figure 2: When features help. In the link prediction task, features help to regularize if they align with Ã because they
encode the target structure. Along the x-axis we plot the alignment between the graph and the features with two different
scores: on the bottom, we plot misalignment as measured by dalgn, described in Definition 10 (low is good alignment,
high is bad alignment). On the top, we show the alignment given by the number of overlapping dimensions of the two
subspaces. The figures show train and test performance for the link prediction task on the synthetic dataset described in
Section 5. We embed the points into eight dimensions. We plot values for ten independently sampled graphs. The left
figure shows results for the architecture with the relu encoder and the right figure shows results for the linear model.

usually decrease with increasing misalignment between the features and the graph. Adding features decreases the train
performance, indicating that features restrict the solution space. Features may encode similarities in the feature space
that are not present in the (incomplete) graph. This information restricts the solution space and can help to recover
those missing structures. Moreover, the featureless model shows high train performance while the test performance is
low. This behavior is expected in link prediction as optimal train performance implies sub-optimal test performance.
In Figure 4, we observe the same behavior for the real-world datasets. The features add information about the target
structure and improve the test performance. We suggest the following perspective: In the link prediction task, features
act as a regularizer preventing the model from encoding the training adjacency matrix optimally. If they encode the
desired graph structure, this regularization makes the model more robust to perturbations in the adjacency matrix,
which is basically the task for link prediction. Here we assume the input graph is incomplete or perturbed, and we
want to be robust against these perturbations and still recover the original graph. If the features do not encode the
desired structure, including them can harm the performance. The relu encoder, where the features are passed through
a weight multiplication and a relu activation, turns out to be more robust to false information, possibly learning to
ignore (parts) of the features. The linear model can not compensate for erroneous feature information, which becomes
visible in Figure 2, where, with more significant misalignment, the training error for the relu encoder drops slowly
compared to the linear encoder. We can suspect slight overfitting in both settings when the overlapping dimension
exceeds the embedding dimension. The effect is declining test performance, even for very aligned features. In this case,
the introduced bias via the features might be too weak.

When features harm. In Figure 3, we visualize the performance of the models in the node prediction task. We observe
similar behavior for the architectures using features as in the previous task. As expected, the performance decreases for
an increasing distance of alignment dalgn. Interestingly, the test performance stays close to the train performance, which
indicates that both models generalize well to unseen nodes and larger graphs. Supporting our intuition, we observe
that for both encoders, the featureless versions outperform the architectures using features. In the node prediction task,
restricting the representational power by adding features harms the model’s performance. Our experiments for the
node prediction task show that featureless models can outperform the versions including features. Contrary to the link
prediction task, in the node prediction setting, we assume that the given graph adjacency matrix already encodes the
target structure of every node in the graph. Even if the features align optimally with the adjacency matrix, they do not
hold additional information that is not already encoded in the adjacency matrix. In this setting, features still add a bias,
but assuming that the given adjacency matrix is noiseless, they restrict the solution space in an undesired way.

In practice and real-world data, we usually do not know whether the given features encode the correct structure or
if the graph is complete. So, not all of the intuition discussed above directly applies. We compute the normalized
distance as given by dalgn and observe that the alignment is generally very good, with values of 0.6709 and 0.6940
for Cora and Citeseer , respectively. Misalignment is still good but slightly worse for Pubmed with a value of

8

0.
62

0.
92

1.
11

1.
21

1.
25

1.
25

1.
31

fe
at

ur
e

le
ss

normalized misalignment

0.5

0.6

0.7

0.8

0.9

1.0
A

U
C

GCN

test performance
train performance

0.
62

0.
92

1.
11

1.
21

1.
24

1.
25

1.
34

fe
at

ur
e

le
ss

normalized misalignment

linear

64 32 16 8 4 2 0

overlapping dimensions d

64 32 16 8 4 2 0

overlapping dimensions d

Figure 3: When features harm. Adding features can harm the node prediction task performance, preventing optimal
graph fitting. The x-axis shows the alignment between the graph and the features with two different scores: we plot the
misalignment as measured by dalgn, described in Definition 10 (low is good alignment, high is bad alignment). On
the top, we show alignment given by the number of overlapping dimensions of the two subspaces. The figures show
train and test performance for the node prediction task on the synthetic dataset described in Section 5. We embed the
nodes into eight dimensions. We plot values for ten independently sampled graphs. The left figure shows results for the
architecture with the relu-encoder and the right figure shows results for the linear model.

0.8577, which indicates that almost 50% of the dimensions are misaligned. For the three benchmarks and the node
prediction task, embedding into 16 dimensions already achieves nearly perfect recovery for all models. This reinforces
our discussion about Assumption 2 being weak to no restriction. Usually, one would choose the smallest possible
embedding dimension that shows promising results. See Appendix C for the performance when embedding into 16
dimensions. We embed the data into only four dimensions to get more insightful results. In Figure 4, we see that for
the Cora and the Citeseer datasets, the models using features perform slightly better than those without features.
This behavior could indicate noise in the input adjacency matrix, which the feature information regularizes. For the
Pubmed dataset, where the features are slightly less aligned, not using the features seems to perform better. However,
this difference is minimal. Compared to the synthetic dataset and Pubmed, the two networks from Cora and Citeseer
have significantly higher feature dimensions in relation to the number of nodes possibly encoding redundancy. In
summary, our findings indicate that the features encode mostly the correct structure, and adding them can improve
optimization even for features with almost no additional information.

6 Conclusion
This work presents a theoretical perspective on the representational power and the inductive bias of graph auto-encoders.
We consider a relu architecture and a linear architecture for the encoder. We prove that the linear encoder has greater
representational power than nonlinear encoders. Theorem 5 also extends to more advanced models with similar
encoder architecture and even to other nonlinear graph functions. Based on our experiments and empirical work in the
literature, the nonlinear structure of the relu auto-encoder does not improve learning compared to the linear encoder.
Our evaluations support the idea that the introduced bias from the nonlinearity is not the crucial ingredient to reducing
the solution space in a meaningful way. On the other hand, the features can introduce a powerful inductive bias to
both encoder architectures, improving their test performance. Whether features improve training and test performance
heavily depends on the task we want to solve. For the two example tasks we consider in this paper, features help
with link prediction but do not help node prediction. However, supporting the idea that linear encoders have larger
representational power in training and can generalize, the linear encoder outperforms the nonlinear one in both tasks.

Acknowledgments
This work has been supported by the German Research Foundation through the Cluster of Excellence “Machine Learning
– New Perspectives for Science" (EXC 2064/1 number 390727645) and the International Max Planck Research School
for Intelligent Systems (IMPRS-IS).

9

tes
t

tra
in

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C
lin

k
pr

ed
ic

tio
n

cora

tes
t

tra
in

citeseer

tes
t

tra
in

pubmed
relu

tes
t

tra
in

0.75

0.80

0.85

0.90

0.95

1.00

cora

tes
t

tra
in

citeseer

tes
t

tra
in

pubmed
linear

tes
t

tra
in

0.95

0.96

0.97

0.98

0.99

1.00

1.01

A
U

C
no

de
pr

ed
ic

tio
n

tes
t

tra
in tes

t
tra

in

with features

tes
t

tra
in

0.95

0.96

0.97

0.98

0.99

1.00

1.01

tes
t

tra
in tes

t
tra

in

featureless

Figure 4: Train and test performance for the three real-world datasets Cora Citeseer and Pubmed. Vertical lines
indicate standard deviation. We consider relu and linear encoder models with and without features. Top: Link prediction
task; we embed points into 16 dimensions. Bottom: Node prediction task, points are embedded into four dimensions.
The normalized misalignment scores are 0.67 for Cora , 0.69 for Citeseer and 0.86 for Pubmed.

References
S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning graph representations. AAAI Conference on Artificial

Intelligence, 2016.

B. P. Chamberlain, J. Clough, and M. P. Deisenroth. Neural embeddings of graphs in hyperbolic space. preprint
arXiv:1705.10359, 2017.

S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S. Huang. Heterogeneous network embedding via deep
architectures. International conference on knowledge discovery and data mining (KDD), 2015.

T. R. Davidson, L. Falorsi, N. De Cao, T. Kipf, and J. M. Tomczak. Hyperspherical variational auto-encoders.
Conference on Uncertainty in Artificial Intelligence (UAI), 2018.

Y. Dong, N. V. Chawla, and A. Swami. Metapath2vec: Scalable representation learning for heterogeneous networks.
International conference on knowledge discovery and data mining (KDD), 2017.

A. Grover and J. Leskovec. Node2vec: Scalable feature learning for networks. International conference on Knowledge
discovery and data mining (KDD), 2016.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. Neural Information
Processing Systems (NeurIPS), 2017a.

W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs: Methods and applications. preprint
arXiv:1709.05584, 2017b.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. preprint
arXiv:1609.02907, 2016a.

T. N. Kipf and M. Welling. Variational graph auto-encoders. NeurIPS Workshop on Bayesian Deep Learning, 2016b.

10

X. Li, H. Zhang, and R. Zhang. Adaptive graph auto-encoder for general data clustering. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang. Adversarially regularized graph autoencoder for graph
embedding. International Joint Conference on Artificial Intelligence, 2018.

L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo. Struc2vec: Learning node representations from structural identity.
International conference on knowledge discovery and data mining (KDD), 2017.

G. Salha, R. Hennequin, and M. Vazirgiannis. Simple and effective graph autoencoders with one-hop linear models.
European Conference, ECML PKDD, 2020.

A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks. arXiv preprint arXiv:1312.6120, 2013.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale information network embedding. pages
1067–1077. International conference on world wide web (WWW), 2015.

Vaibhav, P.-Y. Huang, and R. Frederking. Rwr-gae: Random walk regularization for graph auto encoders. arXiv preprint
arXiv:1908.04003, 2019.

D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. International conference on Knowledge discovery
and data mining (KDD), 2016.

F. Wu, T. Zhang, A. H. S. Jr., C. Fifty, T. Yu, and K. Q. Weinberger. Simplifying graph convolutional networks.
International Conference on Machine Learning (ICML), 2019.

11

A Proofs
In this Section, we provide the proofs of Lemma 4 and Corollary 6 and discuss the consequences.
Lemma 4 (Orthogonal Transformation). For P ∈ Rn×d, A ∈ Rn×m, rank(P) ≤ rank(A), there exists an
orthogonal matrix R with span(RA) ⊇ span(P).
Proof of Lemma 4. rank(Z) ≤ rank(A) = k.
Im(A) is spanned by an orthogonal normal basis {ui=1,...,d,...k}
Im(Z) is spanned by an orthogonal normal basis {vi=1,...,d}.

Let U :=

(| · · · |
u1 · · · ud · · ·
| · · · |

)
and V :=

(| · · · |
v1 · · · wd · · ·
| · · · |

)
.

Then with R = V

(
Id 0
0 0

)
UT , span(Z) ⊆ span(RA).

Corollary 6 (Representational power of GAEs). For any (trained) graph auto-encoder in Zrelu ⊇ Zrelu,X , there
exists an equivalent, featureless linear encoder in Zlin, that can achieve the same training loss: Zlin ⊇ Zrelu.

Proof of Corollary 6. Let Zlin(W) = Ã ·W for W ∈ Rn×f be the latent representation of the linear model with
weights W . We can write the latent representation for any GAE as a linear function of the form Zrelu(W) = Ã ·W
for some matrix W ∈ W , where W is the set of matrices that can be represented by the relu term in the function:
W = {relu(ÃXW (0))W (1) : W (0) ∈ Rn×d,W (1) ∈ Rd×f} ⊆ Rn×f . We now define the possible latent
embeddings that the two models can learn. For the relu encoder we have Zrelu = {Zrelu(W) for all W ∈ W},
and for the linear model we get Zlin = {Zlin(W) for all W ∈ Rn×g}. Since W ⊆ Rn×g, the set of learn-
able embeddings of the relu encoder is a true subspace of all learnable embeddings of the linear encoder:
Zrelu = {ÃW : W ∈ W} ⊆ {ÃW : W ∈ Rn×g} = Zlin. It follows that, given any loss l, the linear model can
achieve at least as good performance as the relu encoder: inf

Zrelu∈Zrelu

l(Zrelu) ≥ inf
Zlin∈Zlin

l(Zlin).

Consequences. To better understand the implications of Corollary 6, it is instructive to engage in the following thought
experiment. Consider the standard supervised learning setting with a training data matrix U ∈ Rn×d and labels y ∈ R.
For any function (say a deep neural network) f : Rn×d → Rn, it is possible to express f(U) = UU+f(U) = UW , for
some W ∈ Rd×1 if and only if U has a right inverse. This is a mild requirement if d > n. Note that this is precisely the
”underdetermined” or ”high-dimensional” setting where it is possible to find a linear map that perfectly fits the training
data to the function values. If d < n, the right inverse cannot exist; therefore, one cannot find such a W . Let us contrast
this with our setting of GNNs in Corollary 6. Since we consider graph networks, the input is the adjacency matrix
Ã ∈ Rn×n; that is, we have feature dimensions equal to sample size (n = d). If Ã is full rank, one can similarly find a
linear map that perfectly fits the outputs of any nonlinear mapping of the input data. While it may seem surprising at
first glance, it is intuitively clear that in high dimensions, one can always find a linear map that perfectly fits the outputs
of any nonlinear mapping. If the model is restricted to the input data domain, we can attain the same “training loss”.
But even if Ã was not full rank, in the graph auto-encoder setting, the GCN’s last layer has linear activation, restricting
the solution space in exactly the same way the linear model does.

12

B Experimental details

For our empirical evaluation we consider one synthetic dataset and three real world citation networks; Cora , Citeseer
and Pubmed. Table 1 shows the graph statistics for the considered datasets.

dataset nodes edges density dim. features

Cora 2708 5278 0.00143 1433
Citeseer 3327 4614 0.00083 3703
Pubmed 19717 44324 0.00023 500
Synthetic ∼ 1000 ∼ 10000− 20000 ∼ 0.01− 0.02 64

Table 1: Graph statistics of the real world datasets and averaged values in the synthetic setting.

For every dataset we compute the performances for two different tasks; node and link prediction, and four different
models: using the relu encoder and the linear encoder once with features and also without features. So we compute
performances in eight different settings for each dataset.
Every graph is split into train, validation and test sets with a ration of 70/10/20. So training always happens on either
70% of the edges and all nodes for the link prediction task, or on only a set of 70% of the nodes for the node prediction
task. Test performance is then evaluated on 90% of the edges / nodes. We do not use the parts of the graph used for
validation.
The code for the relu graph auto-encoder is publicly available with an MIT license.
We run the experiments on an internal cluster on Intel XEON CPU E5-2650 v4 and GeForce GTX 1080 Ti. All
experiments on the synthetic dataset take about 9 hours on single CPU and single GPU. Experiments for Cora and
Citeseer take about 4 and 5 hours respectively. For the Pubmed dataset, which is the largest one, running all 8 setups
took about 4 days on a single CPU and two GPUs.

cora

edge node

linear GAE linear GAE

features 0.91± 0.0088 0.88± 0.0123 0.99± 0.0009 0.99± 0.0014

featureless 0.84± 0.0078 0.85± 0.0122 0.98± 0.0027 0.98± 0.0016

citeseer

edge node

linear GAE linear GAE

features 0.92± 0.0087 0.84± 0.0264 0.99± 0.0010 0.99± 0.0012

featureless 0.78± 0.0131 0.78± 0.0149 0.98± 0.0015 0.98± 0.0014

pubmed

edge node

linear GAE linear GAE

features 0.96± 0.0018 0.92± 0.0037 0.98± 0.0006 0.97± 0.0055

featureless 0.83± 0.0056 0.83± 0.0049 0.99± 0.0009 0.99± 0.0006

Table 2: Test performance in terms of AUC for the three real world datasets Cora Citeseer and Pubmed with
given standard deviations. We consider relu and linear encoder models with and without features. Top row: Link
prediction task, points are embedded into 16 dimensions. Bottom row: Node prediction task, points are embedded into
16 dimensions.

13

C Additional experiments
For the real world datasets and the link prediction task we show result for embedding into 4 dimensions in the main
paper. Table 2 show results when embedding into 16 dimensions. All models show near to optimal performance which
indicates that embedding into 16 dimensions is barely a restriction and too simple of a task.

14

	Introduction
	Preliminaries
	Relu encoders have at most the representational power of linear encoders
	The inductive bias of adding features
	Empirical evaluation
	Conclusion
	Proofs
	Experimental details
	Additional experiments

