#!/usr/bin/env sage r""" Generate finite field parameters for minisketch. This script selects the finite fields used by minisketch for various sizes and generates the required tables for the implementation. The output (after formatting) can be found in src/fields/*.cpp. """ B. = GF(2) P.

= B[] def apply_map(m, v): r = 0 i = 0 while v != 0: if (v & 1): r ^^= m[i] i += 1 v >>= 1 return r def recurse_moduli(acc, maxweight, maxdegree): for pos in range(maxweight, maxdegree + 1, 1): poly = acc + p^pos if maxweight == 1: if poly.is_irreducible(): return (pos, poly) else: (deg, ret) = recurse_moduli(poly, maxweight - 1, pos - 1) if ret is not None: return (pos, ret) return (None, None) def compute_moduli(bits): # Return all optimal irreducible polynomials for GF(2^bits) # The result is a list of tuples (weight, degree of second-highest nonzero coefficient, polynomial) maxdegree = bits - 1 result = [] for weight in range(1, bits, 2): deg, res = None, None while True: ret = recurse_moduli(p^bits + 1, weight, maxdegree) if ret[0] is not None: (deg, res) = ret maxdegree = deg - 1 else: break if res is not None: result.append((weight + 2, deg, res)) return result def bits_to_int(vals): ret = 0 base = 1 for val in vals: ret += Integer(val) * base base *= 2 return ret def sqr_table(f, bits, n=1): ret = [] for i in range(bits): ret.append((f^(2^n*i)).integer_representation()) return ret # Compute x**(2**n) def pow2(x, n): for i in range(n): x = x**2 return x def qrt_table(F, f, bits): # Table for solving x2 + x = a # This implements the technique from https://www.raco.cat/index.php/PublicacionsMatematiques/article/viewFile/37927/40412, Lemma 1 for i in range(bits): if (f**i).trace() != 0: u = f**i ret = [] for i in range(0, bits): d = f^i y = sum(pow2(d, j) * sum(pow2(u, k) for k in range(j)) for j in range(1, bits)) ret.append(y.integer_representation() ^^ (y.integer_representation() & 1)) return ret def conv_tables(F, NF, bits): # Generate a F(2) linear projection that maps elements from one field # to an isomorphic field with a different modulus. f = F.gen() fp = f.minimal_polynomial() assert(fp == F.modulus()) nfp = fp.change_ring(NF) nf = sorted(nfp.roots(multiplicities=False))[0] ret = [] matrepr = [[B(0) for x in range(bits)] for y in range(bits)] for i in range(bits): val = (nf**i).integer_representation() ret.append(val) for j in range(bits): matrepr[j][i] = B((val >> j) & 1) mat = Matrix(matrepr).inverse().transpose() ret2 = [] for i in range(bits): ret2.append(bits_to_int(mat[i])) for t in range(100): f1a = F.random_element() f1b = F.random_element() f1r = f1a * f1b f2a = NF.fetch_int(apply_map(ret, f1a.integer_representation())) f2b = NF.fetch_int(apply_map(ret, f1b.integer_representation())) f2r = NF.fetch_int(apply_map(ret, f1r.integer_representation())) f2s = f2a * f2b assert(f2r == f2s) for t in range(100): f2a = NF.random_element() f2b = NF.random_element() f2r = f2a * f2b f1a = F.fetch_int(apply_map(ret2, f2a.integer_representation())) f1b = F.fetch_int(apply_map(ret2, f2b.integer_representation())) f1r = F.fetch_int(apply_map(ret2, f2r.integer_representation())) f1s = f1a * f1b assert(f1r == f1s) return (ret, ret2) def fmt(i,typ): if i == 0: return "0" else: return "0x%x" % i def lintranstype(typ, bits, maxtbl): gsize = min(maxtbl, bits) array_size = (bits + gsize - 1) // gsize bits_list = [] total = 0 for i in range(array_size): rsize = (bits - total + array_size - i - 1) // (array_size - i) total += rsize bits_list.append(rsize) return "RecLinTrans<%s, %s>" % (typ, ", ".join("%i" % x for x in bits_list)) INT=0 CLMUL=1 CLMUL_TRI=2 MD=3 def print_modulus_md(mod): ret = "" pos = mod.degree() for c in reversed(list(mod)): if c: if ret: ret += " + " if pos == 0: ret += "1" elif pos == 1: ret += "x" else: ret += "x%i" % pos pos -= 1 return ret def pick_modulus(bits, style): # Choose the lexicographicly-first lowest-weight modulus # optionally subject to implementation specific constraints. moduli = compute_moduli(bits) if style == INT or style == MD: multi_sqr = False need_trans = False elif style == CLMUL: # Fast CLMUL reduction requires that bits + the highest # set bit are less than 66. moduli = filter(lambda x: bits+x[1] <= 66, moduli) + moduli multi_sqr = True need_trans = True if not moduli or moduli[0][2].change_ring(ZZ)(2) == 3 + 2**bits: # For modulus 3, CLMUL_TRI is obviously better. return None elif style == CLMUL_TRI: moduli = filter(lambda x: bits+x[1] <= 66, moduli) + moduli moduli = filter(lambda x: x[0] == 3, moduli) multi_sqr = True need_trans = True else: assert(False) if not moduli: return None return moduli[0][2] def print_result(bits, style): if style == INT: multi_sqr = False need_trans = False table_id = "%i" % bits elif style == MD: pass elif style == CLMUL: multi_sqr = True need_trans = True table_id = "%i" % bits elif style == CLMUL_TRI: multi_sqr = True need_trans = True table_id = "TRI%i" % bits else: assert(False) nmodulus = pick_modulus(bits, INT) modulus = pick_modulus(bits, style) if modulus is None: return if style == MD: print("* *%s*" % print_modulus_md(modulus)) return if bits > 32: typ = "uint64_t" elif bits > 16: typ = "uint32_t" elif bits > 8: typ = "uint16_t" else: typ = "uint8_t" ttyp = lintranstype(typ, bits, 4) rtyp = lintranstype(typ, bits, 6) F. = GF(2**bits, modulus=modulus) include_table = True if style != INT and style != CLMUL: cmodulus = pick_modulus(bits, CLMUL) if cmodulus == modulus: include_table = False table_id = "%i" % bits if include_table: print("typedef %s StatTable%s;" % (rtyp, table_id)) rtyp = "StatTable%s" % table_id if (style == INT): print("typedef %s DynTable%s;" % (ttyp, table_id)) ttyp = "DynTable%s" % table_id if need_trans: if modulus != nmodulus: # If the bitstream modulus is not the best modulus for # this implementation a conversion table will be needed. ctyp = rtyp NF. = GF(2**bits, modulus=nmodulus) ctables = conv_tables(NF, F, bits) loadtbl = "&LOAD_TABLE_%s" % table_id savetbl = "&SAVE_TABLE_%s" % table_id if include_table: print("constexpr %s LOAD_TABLE_%s({%s});" % (ctyp, table_id, ", ".join([fmt(x,typ) for x in ctables[0]]))) print("constexpr %s SAVE_TABLE_%s({%s});" % (ctyp, table_id, ", ".join([fmt(x,typ) for x in ctables[1]]))) else: ctyp = "IdTrans" loadtbl = "&ID_TRANS" savetbl = "&ID_TRANS" else: assert(modulus == nmodulus) if include_table: print("constexpr %s SQR_TABLE_%s({%s});" % (rtyp, table_id, ", ".join([fmt(x,typ) for x in sqr_table(f, bits, 1)]))) if multi_sqr: # Repeated squaring is a linearised polynomial so in F(2^n) it is # F(2) linear and can be computed by a simple bit-matrix. # Repeated squaring is especially useful in powering ladders such as # for inversion. sqr2 = "nullptr" sqr4 = "nullptr" sqr8 = "nullptr" sqr16 = "nullptr" if ((bits - 1) >= 4): if include_table: print("constexpr %s SQR2_TABLE_%s({%s});" % (rtyp, table_id, ", ".join([fmt(x,typ) for x in sqr_table(f, bits, 2)]))) sqr2 = "&SQR2_TABLE_%s" % table_id if ((bits - 1) >= 8): if include_table: print("constexpr %s SQR4_TABLE_%s({%s});" % (rtyp, table_id, ", ".join([fmt(x,typ) for x in sqr_table(f, bits, 4)]))) sqr4 = "&SQR4_TABLE_%s" % table_id if ((bits - 1) >= 16): if include_table: print("constexpr %s SQR8_TABLE_%s({%s});" % (rtyp, table_id, ", ".join([fmt(x,typ) for x in sqr_table(f, bits, 8)]))) sqr8 = "&SQR8_TABLE_%s" % table_id if ((bits - 1) >= 32): if include_table: print("constexpr %s SQR16_TABLE_%s({%s});" % (rtyp, table_id, ", ".join([fmt(x,typ) for x in sqr_table(f, bits, 16)]))) sqr16 = "&SQR16_TABLE_%s" % table_id if include_table: print("constexpr %s QRT_TABLE_%s({%s});" % (rtyp, table_id, ", ".join([fmt(x,typ) for x in qrt_table(F, f, bits)]))) modulus_weight = modulus.hamming_weight() modulus_degree = (modulus - p**bits).degree() modulus_int = (modulus - p**bits).change_ring(ZZ)(2) lfsr = "" if style == INT: print("typedef Field<%s, %i, %i, %s, %s, &SQR_TABLE_%s, &QRT_TABLE_%s%s> Field%i;" % (typ, bits, modulus_int, rtyp, ttyp, table_id, table_id, lfsr, bits)) elif style == CLMUL: print("typedef Field<%s, %i, %i, %s, &SQR_TABLE_%s, %s, %s, %s, %s, &QRT_TABLE_%s, %s, %s, %s%s> Field%i;" % (typ, bits, modulus_int, rtyp, table_id, sqr2, sqr4, sqr8, sqr16, table_id, ctyp, loadtbl, savetbl, lfsr, bits)) elif style == CLMUL_TRI: print("typedef FieldTri<%s, %i, %i, %s, &SQR_TABLE_%s, %s, %s, %s, %s, &QRT_TABLE_%s, %s, %s, %s> FieldTri%i;" % (typ, bits, modulus_degree, rtyp, table_id, sqr2, sqr4, sqr8, sqr16, table_id, ctyp, loadtbl, savetbl, bits)) else: assert(False) for bits in range(2, 65): print("// %i bit field" % bits) print_result(bits, INT) print("") for bits in range(2, 65): print("// %i bit field" % bits) print_result(bits, CLMUL) print_result(bits, CLMUL_TRI) print("") for bits in range(2, 65): print_result(bits, MD)