#![allow(unknown_lints, unused_must_use, clippy::all)] #![cfg_attr( feature = "minivec_nightly", feature(min_specialization, trusted_len, inplace_iteration) )] extern crate minivec; use minivec::mini_vec; use minivec::MiniVec; // This code is largely a copy-paste of the official Rust test file for `std::vec::Vec` which is // both Apache 2.0 and/or MIT licensed. See the accompanying LICENSE-APACHE and LICENSE-MIT files for // more information on those licenses. // // https://github.com/rust-lang/rust/blob/e670844012c2e26442d7a70f2f4236e390d91647/library/alloc/tests/vec.rs // https://raw.githubusercontent.com/rust-lang/rust/e670844012c2e26442d7a70f2f4236e390d91647/library/alloc/tests/vec.rs // // ^ official source for `Vec` test file // // TODO: // * implement FromIterator specialization for minivec::IntoIterator when it's stable // * implement unsafe impl Drop<#[may_dangle] T> when it's stable // // Code modifications: // * rename `Vec` to `MiniVec` and `vec!` to `mini_vec!` // * change `size_of` test to match `size_of::()` // * comment out yet-to-be-completed features // * replace `box` expressions with `Box::new()` // * comment out test assertions that require specialization // * comment out tests that rely on Vec's Drop impl potentially dangling // // use std::assert_matches::assert_matches; // use std::borrow::Cow; use std::cell::Cell; // use std::collections::TryReserveErrorKind::*; use std::fmt::Debug; // use std::iter::InPlaceIterable; use std::mem::{size_of, swap}; use std::ops::Bound::*; use std::panic::{catch_unwind, AssertUnwindSafe}; use std::rc::Rc; use std::sync::atomic::{AtomicU32, Ordering}; use std::vec::{Drain, IntoIter}; struct DropCounter<'a> { count: &'a mut u32, } impl Drop for DropCounter<'_> { fn drop(&mut self) { *self.count += 1; } } #[test] fn test_small_vec_struct() { assert_eq!(size_of::>(), size_of::()); } #[test] fn test_double_drop() { struct TwoVec { x: MiniVec, y: MiniVec, } let (mut count_x, mut count_y) = (0, 0); { let mut tv = TwoVec { x: MiniVec::new(), y: MiniVec::new(), }; tv.x.push(DropCounter { count: &mut count_x, }); tv.y.push(DropCounter { count: &mut count_y, }); // If Vec had a drop flag, here is where it would be zeroed. // Instead, it should rely on its internal state to prevent // doing anything significant when dropped multiple times. drop(tv.x); // Here tv goes out of scope, tv.y should be dropped, but not tv.x. } assert_eq!(count_x, 1); assert_eq!(count_y, 1); } #[test] fn test_reserve() { let mut v = Vec::new(); assert_eq!(v.capacity(), 0); v.reserve(2); assert!(v.capacity() >= 2); for i in 0..16 { v.push(i); } assert!(v.capacity() >= 16); v.reserve(16); assert!(v.capacity() >= 32); v.push(16); v.reserve(16); assert!(v.capacity() >= 33) } // #[test] // fn test_zst_capacity() { // assert_eq!(Vec::<()>::new().capacity(), usize::MAX); // } #[test] fn test_indexing() { let v: MiniVec = mini_vec![10, 20]; assert_eq!(v[0], 10); assert_eq!(v[1], 20); let mut x: usize = 0; assert_eq!(v[x], 10); assert_eq!(v[x + 1], 20); x = x + 1; assert_eq!(v[x], 20); assert_eq!(v[x - 1], 10); } #[test] fn test_debug_fmt() { let vec1: MiniVec = mini_vec![]; assert_eq!("[]", format!("{:?}", vec1)); let vec2 = mini_vec![0, 1]; assert_eq!("[0, 1]", format!("{:?}", vec2)); let slice: &[isize] = &[4, 5]; assert_eq!("[4, 5]", format!("{:?}", slice)); } #[test] fn test_push() { let mut v = mini_vec![]; v.push(1); assert_eq!(v, [1]); v.push(2); assert_eq!(v, [1, 2]); v.push(3); assert_eq!(v, [1, 2, 3]); } #[test] fn test_extend() { let mut v = Vec::new(); let mut w = Vec::new(); v.extend(w.clone()); assert_eq!(v, &[]); v.extend(0..3); for i in 0..3 { w.push(i) } assert_eq!(v, w); v.extend(3..10); for i in 3..10 { w.push(i) } assert_eq!(v, w); v.extend(w.clone()); // specializes to `append` assert!(v.iter().eq(w.iter().chain(w.iter()))); // Zero sized types // #[derive(PartialEq, Debug)] // struct Foo; // let mut a = Vec::new(); // let b = mini_vec![Foo, Foo]; // a.extend(b); // assert_eq!(a, &[Foo, Foo]); // Double drop let mut count_x = 0; { let mut x = Vec::new(); let y = mini_vec![DropCounter { count: &mut count_x, }]; x.extend(y); } assert_eq!(count_x, 1); } #[test] fn test_extend_from_slice() { let a: MiniVec = mini_vec![1, 2, 3, 4, 5]; let b: MiniVec = mini_vec![6, 7, 8, 9, 0]; let mut v: MiniVec = a; v.extend_from_slice(&b); assert_eq!(v, [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]); } #[test] fn test_extend_ref() { let mut v = mini_vec![1, 2]; v.extend(&[3, 4, 5]); assert_eq!(v.len(), 5); assert_eq!(v, [1, 2, 3, 4, 5]); let w = mini_vec![6, 7]; v.extend(&w); assert_eq!(v.len(), 7); assert_eq!(v, [1, 2, 3, 4, 5, 6, 7]); } #[test] fn test_slice_from_ref() { let values = mini_vec![1, 2, 3, 4, 5]; let slice = &values[1..3]; assert_eq!(slice, [2, 3]); } #[test] fn test_slice_from_mut() { let mut values = mini_vec![1, 2, 3, 4, 5]; { let slice = &mut values[2..]; assert!(slice == [3, 4, 5]); for p in slice { *p += 2; } } assert!(values == [1, 2, 5, 6, 7]); } #[test] fn test_slice_to_mut() { let mut values = mini_vec![1, 2, 3, 4, 5]; { let slice = &mut values[..2]; assert!(slice == [1, 2]); for p in slice { *p += 1; } } assert!(values == [2, 3, 3, 4, 5]); } #[test] fn test_split_at_mut() { let mut values = mini_vec![1, 2, 3, 4, 5]; { let (left, right) = values.split_at_mut(2); { let left: &[_] = left; assert!(&left[..left.len()] == &[1, 2]); } for p in left { *p += 1; } { let right: &[_] = right; assert!(&right[..right.len()] == &[3, 4, 5]); } for p in right { *p += 2; } } assert_eq!(values, [2, 3, 5, 6, 7]); } #[test] fn test_clone() { let v: MiniVec = mini_vec![]; let w = mini_vec![1, 2, 3]; assert_eq!(v, v.clone()); let z = w.clone(); assert_eq!(w, z); // they should be disjoint in memory. assert!(w.as_ptr() != z.as_ptr()) } #[test] fn test_clone_from() { let mut v = mini_vec![]; let three: MiniVec> = mini_vec![Box::new(1), Box::new(2), Box::new(3)]; let two: MiniVec> = mini_vec![Box::new(4), Box::new(5)]; // zero, long v.clone_from(&three); assert_eq!(v, three); // equal v.clone_from(&three); assert_eq!(v, three); // long, short v.clone_from(&two); assert_eq!(v, two); // short, long v.clone_from(&three); assert_eq!(v, three) } #[test] fn test_retain() { let mut vec = mini_vec![1, 2, 3, 4]; vec.retain(|&x| x % 2 == 0); assert_eq!(vec, [2, 4]); } #[test] fn test_retain_pred_panic_with_hole() { let v = (0..5).map(Rc::new).collect::>(); catch_unwind(AssertUnwindSafe(|| { let mut v = v.clone(); v.retain(|r| match **r { 0 => true, 1 => false, 2 => true, _ => panic!(), }); })) .unwrap_err(); // Everything is dropped when predicate panicked. assert!(v.iter().all(|r| Rc::strong_count(r) == 1)); } #[test] fn test_retain_pred_panic_no_hole() { let v = (0..5).map(Rc::new).collect::>(); catch_unwind(AssertUnwindSafe(|| { let mut v = v.clone(); v.retain(|r| match **r { 0 | 1 | 2 => true, _ => panic!(), }); })) .unwrap_err(); // Everything is dropped when predicate panicked. assert!(v.iter().all(|r| Rc::strong_count(r) == 1)); } #[test] fn test_retain_drop_panic() { struct Wrap(Rc); impl Drop for Wrap { fn drop(&mut self) { if *self.0 == 3 { panic!(); } } } let v = (0..5).map(|x| Rc::new(x)).collect::>(); catch_unwind(AssertUnwindSafe(|| { let mut v = v.iter().map(|r| Wrap(r.clone())).collect::>(); v.retain(|w| match *w.0 { 0 => true, 1 => false, 2 => true, 3 => false, // Drop panic. _ => true, }); })) .unwrap_err(); // Other elements are dropped when `drop` of one element panicked. // The panicked wrapper also has its Rc dropped. assert!(v.iter().all(|r| Rc::strong_count(r) == 1)); } #[test] fn test_dedup() { fn case(a: MiniVec, b: MiniVec) { let mut v = a; v.dedup(); assert_eq!(v, b); } case(mini_vec![], mini_vec![]); case(mini_vec![1], mini_vec![1]); case(mini_vec![1, 1], mini_vec![1]); case(mini_vec![1, 2, 3], mini_vec![1, 2, 3]); case(mini_vec![1, 1, 2, 3], mini_vec![1, 2, 3]); case(mini_vec![1, 2, 2, 3], mini_vec![1, 2, 3]); case(mini_vec![1, 2, 3, 3], mini_vec![1, 2, 3]); case(mini_vec![1, 1, 2, 2, 2, 3, 3], mini_vec![1, 2, 3]); } #[test] fn test_dedup_by_key() { fn case(a: MiniVec, b: MiniVec) { let mut v = a; v.dedup_by_key(|i| *i / 10); assert_eq!(v, b); } case(mini_vec![], mini_vec![]); case(mini_vec![10], mini_vec![10]); case(mini_vec![10, 11], mini_vec![10]); case(mini_vec![10, 20, 30], mini_vec![10, 20, 30]); case(mini_vec![10, 11, 20, 30], mini_vec![10, 20, 30]); case(mini_vec![10, 20, 21, 30], mini_vec![10, 20, 30]); case(mini_vec![10, 20, 30, 31], mini_vec![10, 20, 30]); case(mini_vec![10, 11, 20, 21, 22, 30, 31], mini_vec![10, 20, 30]); } #[test] fn test_dedup_by() { let mut vec = mini_vec!["foo", "bar", "Bar", "baz", "bar"]; vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b)); assert_eq!(vec, ["foo", "bar", "baz", "bar"]); let mut vec = mini_vec![("foo", 1), ("foo", 2), ("bar", 3), ("bar", 4), ("bar", 5)]; vec.dedup_by(|a, b| { a.0 == b.0 && { b.1 += a.1; true } }); assert_eq!(vec, [("foo", 3), ("bar", 12)]); } #[test] fn test_dedup_unique() { let mut v0: MiniVec> = mini_vec![Box::new(1), Box::new(1), Box::new(2), Box::new(3)]; v0.dedup(); let mut v1: MiniVec> = mini_vec![Box::new(1), Box::new(2), Box::new(2), Box::new(3)]; v1.dedup(); let mut v2: MiniVec> = mini_vec![Box::new(1), Box::new(2), Box::new(3), Box::new(3)]; v2.dedup(); // If the boxed pointers were leaked or otherwise misused, valgrind // and/or rt should raise errors. } // #[test] // fn zero_sized_values() { // let mut v = MiniVec::new(); // assert_eq!(v.len(), 0); // v.push(()); // assert_eq!(v.len(), 1); // v.push(()); // assert_eq!(v.len(), 2); // assert_eq!(v.pop(), Some(())); // assert_eq!(v.pop(), Some(())); // assert_eq!(v.pop(), None); // assert_eq!(v.iter().count(), 0); // v.push(()); // assert_eq!(v.iter().count(), 1); // v.push(()); // assert_eq!(v.iter().count(), 2); // for &() in &v {} // assert_eq!(v.iter_mut().count(), 2); // v.push(()); // assert_eq!(v.iter_mut().count(), 3); // v.push(()); // assert_eq!(v.iter_mut().count(), 4); // for &mut () in &mut v {} // unsafe { // v.set_len(0); // } // assert_eq!(v.iter_mut().count(), 0); // } #[test] fn test_partition() { assert_eq!( mini_vec![].into_iter().partition(|x: &i32| *x < 3), (mini_vec![], mini_vec![]) ); assert_eq!( mini_vec![1, 2, 3].into_iter().partition(|x| *x < 4), (mini_vec![1, 2, 3], mini_vec![]) ); assert_eq!( mini_vec![1, 2, 3].into_iter().partition(|x| *x < 2), (mini_vec![1], mini_vec![2, 3]) ); assert_eq!( mini_vec![1, 2, 3].into_iter().partition(|x| *x < 0), (mini_vec![], mini_vec![1, 2, 3]) ); } #[test] fn test_zip_unzip() { let z1 = mini_vec![(1, 4), (2, 5), (3, 6)]; let (left, right): (MiniVec<_>, MiniVec<_>) = z1.iter().cloned().unzip(); assert_eq!((1, 4), (left[0], right[0])); assert_eq!((2, 5), (left[1], right[1])); assert_eq!((3, 6), (left[2], right[2])); } #[test] fn test_cmp() { let x: &[isize] = &[1, 2, 3, 4, 5]; let cmp: &[isize] = &[1, 2, 3, 4, 5]; assert_eq!(&x[..], cmp); let cmp: &[isize] = &[3, 4, 5]; assert_eq!(&x[2..], cmp); let cmp: &[isize] = &[1, 2, 3]; assert_eq!(&x[..3], cmp); let cmp: &[isize] = &[2, 3, 4]; assert_eq!(&x[1..4], cmp); let x: MiniVec = mini_vec![1, 2, 3, 4, 5]; let cmp: &[isize] = &[1, 2, 3, 4, 5]; assert_eq!(&x[..], cmp); let cmp: &[isize] = &[3, 4, 5]; assert_eq!(&x[2..], cmp); let cmp: &[isize] = &[1, 2, 3]; assert_eq!(&x[..3], cmp); let cmp: &[isize] = &[2, 3, 4]; assert_eq!(&x[1..4], cmp); } #[test] fn test_vec_truncate_drop() { static mut DROPS: u32 = 0; #[allow(dead_code)] struct Elem(i32); impl Drop for Elem { fn drop(&mut self) { unsafe { DROPS += 1; } } } let mut v = mini_vec![Elem(1), Elem(2), Elem(3), Elem(4), Elem(5)]; assert_eq!(unsafe { DROPS }, 0); v.truncate(3); assert_eq!(unsafe { DROPS }, 2); v.truncate(0); assert_eq!(unsafe { DROPS }, 5); } #[test] #[should_panic] fn test_vec_truncate_fail() { struct BadElem(i32); impl Drop for BadElem { fn drop(&mut self) { let BadElem(ref mut x) = *self; if *x == 0xbadbeef { panic!("BadElem panic: 0xbadbeef") } } } let mut v = mini_vec![BadElem(1), BadElem(2), BadElem(0xbadbeef), BadElem(4)]; v.truncate(0); } #[test] fn test_index() { let vec = mini_vec![1, 2, 3]; assert!(vec[1] == 2); } #[test] #[should_panic] fn test_index_out_of_bounds() { let vec = mini_vec![1, 2, 3]; let _ = vec[3]; } #[test] #[should_panic] fn test_slice_out_of_bounds_1() { let x = mini_vec![1, 2, 3, 4, 5]; let _ = &x[!0..]; } #[test] #[should_panic] fn test_slice_out_of_bounds_2() { let x = mini_vec![1, 2, 3, 4, 5]; let _ = &x[..6]; } #[test] #[should_panic] fn test_slice_out_of_bounds_3() { let x = mini_vec![1, 2, 3, 4, 5]; let _ = &x[!0..4]; } #[test] #[should_panic] fn test_slice_out_of_bounds_4() { let x = mini_vec![1, 2, 3, 4, 5]; let _ = &x[1..6]; } #[test] #[should_panic] fn test_slice_out_of_bounds_5() { let x = mini_vec![1, 2, 3, 4, 5]; let _ = &x[3..2]; } #[test] #[should_panic] fn test_swap_remove_empty() { let mut vec = Vec::::new(); vec.swap_remove(0); } #[test] fn test_move_items() { let vec = mini_vec![1, 2, 3]; let mut vec2 = mini_vec![]; for i in vec { vec2.push(i); } assert_eq!(vec2, [1, 2, 3]); } #[test] fn test_move_items_reverse() { let vec = mini_vec![1, 2, 3]; let mut vec2 = mini_vec![]; for i in vec.into_iter().rev() { vec2.push(i); } assert_eq!(vec2, [3, 2, 1]); } // #[test] // fn test_move_items_zero_sized() { // let vec = mini_vec![(), (), ()]; // let mut vec2 = mini_vec![]; // for i in vec { // vec2.push(i); // } // assert_eq!(vec2, [(), (), ()]); // } #[test] fn test_drain_empty_vec() { let mut vec: MiniVec = mini_vec![]; let mut vec2: MiniVec = mini_vec![]; for i in vec.drain(..) { vec2.push(i); } assert!(vec.is_empty()); assert!(vec2.is_empty()); } #[test] fn test_drain_items() { let mut vec = mini_vec![1, 2, 3]; let mut vec2 = mini_vec![]; for i in vec.drain(..) { vec2.push(i); } assert_eq!(vec, []); assert_eq!(vec2, [1, 2, 3]); } #[test] fn test_drain_items_reverse() { let mut vec = mini_vec![1, 2, 3]; let mut vec2 = mini_vec![]; for i in vec.drain(..).rev() { vec2.push(i); } assert_eq!(vec, []); assert_eq!(vec2, [3, 2, 1]); } // #[test] // fn test_drain_items_zero_sized() { // let mut vec = mini_vec![(), (), ()]; // let mut vec2 = mini_vec![]; // for i in vec.drain(..) { // vec2.push(i); // } // assert_eq!(vec, []); // assert_eq!(vec2, [(), (), ()]); // } #[test] #[should_panic] fn test_drain_out_of_bounds() { let mut v = mini_vec![1, 2, 3, 4, 5]; v.drain(5..6); } #[test] fn test_drain_range() { let mut v = mini_vec![1, 2, 3, 4, 5]; for _ in v.drain(4..) {} assert_eq!(v, &[1, 2, 3, 4]); let mut v: MiniVec<_> = (1..6).map(|x| x.to_string()).collect(); for _ in v.drain(1..4) {} assert_eq!(v, &[1.to_string(), 5.to_string()]); let mut v: MiniVec<_> = (1..6).map(|x| x.to_string()).collect(); for _ in v.drain(1..4).rev() {} assert_eq!(v, &[1.to_string(), 5.to_string()]); // let mut v: MiniVec<_> = mini_vec![(); 5]; // for _ in v.drain(1..4).rev() {} // assert_eq!(v, &[(), ()]); } #[test] fn test_drain_inclusive_range() { let mut v = mini_vec!['a', 'b', 'c', 'd', 'e']; for _ in v.drain(1..=3) {} assert_eq!(v, &['a', 'e']); let mut v: MiniVec<_> = (0..=5).map(|x| x.to_string()).collect(); for _ in v.drain(1..=5) {} assert_eq!(v, &["0".to_string()]); let mut v: MiniVec = (0..=5).map(|x| x.to_string()).collect(); for _ in v.drain(0..=5) {} assert_eq!(v, Vec::::new()); let mut v: MiniVec<_> = (0..=5).map(|x| x.to_string()).collect(); for _ in v.drain(0..=3) {} assert_eq!(v, &["4".to_string(), "5".to_string()]); let mut v: MiniVec<_> = (0..=1).map(|x| x.to_string()).collect(); for _ in v.drain(..=0) {} assert_eq!(v, &["1".to_string()]); } #[test] fn test_drain_max_vec_size() { let mut v = Vec::<()>::with_capacity(usize::MAX); unsafe { v.set_len(usize::MAX); } for _ in v.drain(usize::MAX - 1..) {} assert_eq!(v.len(), usize::MAX - 1); let mut v = Vec::<()>::with_capacity(usize::MAX); unsafe { v.set_len(usize::MAX); } for _ in v.drain(usize::MAX - 1..=usize::MAX - 1) {} assert_eq!(v.len(), usize::MAX - 1); } #[test] #[should_panic] fn test_drain_index_overflow() { let mut v = Vec::<()>::with_capacity(usize::MAX); unsafe { v.set_len(usize::MAX); } v.drain(0..=usize::MAX); } #[test] #[should_panic] fn test_drain_inclusive_out_of_bounds() { let mut v = mini_vec![1, 2, 3, 4, 5]; v.drain(5..=5); } #[test] #[should_panic] fn test_drain_start_overflow() { let mut v = mini_vec![1, 2, 3]; v.drain((Excluded(usize::MAX), Included(0))); } #[test] #[should_panic] fn test_drain_end_overflow() { let mut v = mini_vec![1, 2, 3]; v.drain((Included(0), Included(usize::MAX))); } #[test] fn test_drain_leak() { static mut DROPS: i32 = 0; #[derive(Debug, PartialEq)] struct D(u32, bool); impl Drop for D { fn drop(&mut self) { unsafe { DROPS += 1; } if self.1 { panic!("panic in `drop`"); } } } let mut v = mini_vec![ D(0, false), D(1, false), D(2, false), D(3, false), D(4, true), D(5, false), D(6, false), ]; catch_unwind(AssertUnwindSafe(|| { v.drain(2..=5); })) .ok(); assert_eq!(unsafe { DROPS }, 4); assert_eq!(v, mini_vec![D(0, false), D(1, false), D(6, false),]); } #[test] fn test_splice() { let mut v = mini_vec![1, 2, 3, 4, 5]; let a = [10, 11, 12]; v.splice(2..4, a); assert_eq!(v, &[1, 2, 10, 11, 12, 5]); v.splice(1..3, Some(20)); assert_eq!(v, &[1, 20, 11, 12, 5]); } #[test] fn test_splice_inclusive_range() { let mut v = mini_vec![1, 2, 3, 4, 5]; let a = [10, 11, 12]; let t1: MiniVec<_> = v.splice(2..=3, a).collect(); assert_eq!(v, &[1, 2, 10, 11, 12, 5]); assert_eq!(t1, &[3, 4]); let t2: MiniVec<_> = v.splice(1..=2, Some(20)).collect(); assert_eq!(v, &[1, 20, 11, 12, 5]); assert_eq!(t2, &[2, 10]); } #[test] #[should_panic] fn test_splice_out_of_bounds() { let mut v = mini_vec![1, 2, 3, 4, 5]; let a = [10, 11, 12]; v.splice(5..6, a); } #[test] #[should_panic] fn test_splice_inclusive_out_of_bounds() { let mut v = mini_vec![1, 2, 3, 4, 5]; let a = [10, 11, 12]; v.splice(5..=5, a); } // #[test] // fn test_splice_items_zero_sized() { // let mut vec = mini_vec![(), (), ()]; // let vec2 = mini_vec![]; // let t: MiniVec<_> = vec.splice(1..2, vec2.iter().cloned()).collect(); // assert_eq!(vec, &[(), ()]); // assert_eq!(t, &[()]); // } #[test] fn test_splice_unbounded() { let mut vec = mini_vec![1, 2, 3, 4, 5]; let t: MiniVec<_> = vec.splice(.., None).collect(); assert_eq!(vec, &[]); assert_eq!(t, &[1, 2, 3, 4, 5]); } #[test] fn test_splice_forget() { let mut v = mini_vec![1, 2, 3, 4, 5]; let a = [10, 11, 12]; std::mem::forget(v.splice(2..4, a)); assert_eq!(v, &[1, 2]); } // unfortunately, we can't ever turn our MiniVec into a boxed slice without a custom deallocator and those aren't // stablized yet // // #[test] // fn test_into_boxed_slice() { // let xs = mini_vec![1, 2, 3]; // let ys = xs.into_boxed_slice(); // assert_eq!(&*ys, [1, 2, 3]); // } #[test] fn test_append() { let mut vec = mini_vec![1, 2, 3]; let mut vec2 = mini_vec![4, 5, 6]; vec.append(&mut vec2); assert_eq!(vec, [1, 2, 3, 4, 5, 6]); assert_eq!(vec2, []); } #[test] fn test_split_off() { let mut vec = mini_vec![1, 2, 3, 4, 5, 6]; let orig_capacity = vec.capacity(); let vec2 = vec.split_off(4); assert_eq!(vec, [1, 2, 3, 4]); assert_eq!(vec2, [5, 6]); assert_eq!(vec.capacity(), orig_capacity); } #[test] fn test_split_off_take_all() { let mut vec = mini_vec![1, 2, 3, 4, 5, 6]; let orig_ptr = vec.as_ptr(); let orig_capacity = vec.capacity(); let vec2 = vec.split_off(0); assert_eq!(vec, []); assert_eq!(vec2, [1, 2, 3, 4, 5, 6]); assert_eq!(vec.capacity(), orig_capacity); assert_eq!(vec2.as_ptr(), orig_ptr); } #[test] fn test_into_iter_as_slice() { let vec = mini_vec!['a', 'b', 'c']; let mut into_iter = vec.into_iter(); assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); let _ = into_iter.next().unwrap(); assert_eq!(into_iter.as_slice(), &['b', 'c']); let _ = into_iter.next().unwrap(); let _ = into_iter.next().unwrap(); assert_eq!(into_iter.as_slice(), &[]); } #[test] fn test_into_iter_as_mut_slice() { let vec = mini_vec!['a', 'b', 'c']; let mut into_iter = vec.into_iter(); assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); into_iter.as_mut_slice()[0] = 'x'; into_iter.as_mut_slice()[1] = 'y'; assert_eq!(into_iter.next().unwrap(), 'x'); assert_eq!(into_iter.as_slice(), &['y', 'c']); } #[test] fn test_into_iter_debug() { let vec = mini_vec!['a', 'b', 'c']; let into_iter = vec.into_iter(); let debug = format!("{:?}", into_iter); assert_eq!(debug, "MiniVec::IntoIter(['a', 'b', 'c'])"); } #[test] fn test_into_iter_count() { assert_eq!(mini_vec![1, 2, 3].into_iter().count(), 3); } #[test] fn test_into_iter_clone() { fn iter_equal>(it: I, slice: &[i32]) { let v: MiniVec = it.collect(); assert_eq!(&v[..], slice); } let mut it = mini_vec![1, 2, 3].into_iter(); iter_equal(it.clone(), &[1, 2, 3]); assert_eq!(it.next(), Some(1)); let mut it = it.rev(); iter_equal(it.clone(), &[3, 2]); assert_eq!(it.next(), Some(3)); iter_equal(it.clone(), &[2]); assert_eq!(it.next(), Some(2)); iter_equal(it.clone(), &[]); assert_eq!(it.next(), None); } #[test] fn test_into_iter_leak() { static mut DROPS: i32 = 0; struct D(bool); impl Drop for D { fn drop(&mut self) { unsafe { DROPS += 1; } if self.0 { panic!("panic in `drop`"); } } } let v = mini_vec![D(false), D(true), D(false)]; catch_unwind(move || drop(v.into_iter())).ok(); assert_eq!(unsafe { DROPS }, 3); } // #[test] // fn test_into_iter_advance_by() { // let mut i = mini_vec![1, 2, 3, 4, 5].into_iter(); // i.advance_by(0).unwrap(); // i.advance_back_by(0).unwrap(); // assert_eq!(i.as_slice(), [1, 2, 3, 4, 5]); // i.advance_by(1).unwrap(); // i.advance_back_by(1).unwrap(); // assert_eq!(i.as_slice(), [2, 3, 4]); // assert_eq!(i.advance_back_by(usize::MAX), Err(3)); // assert_eq!(i.advance_by(usize::MAX), Err(0)); // i.advance_by(0).unwrap(); // i.advance_back_by(0).unwrap(); // assert_eq!(i.len(), 0); // } #[cfg(feature = "minivec_nightly")] #[test] fn test_from_iter_specialization() { let src: MiniVec = mini_vec![0usize; 1]; let srcptr = src.as_ptr(); let sink = src.into_iter().collect::>(); let sinkptr = sink.as_ptr(); assert_eq!(srcptr, sinkptr); } #[cfg(feature = "minivec_nightly")] #[test] fn test_from_iter_partially_drained_in_place_specialization() { let src: MiniVec = mini_vec![0usize; 10]; let srcptr = src.as_ptr(); let mut iter = src.into_iter(); iter.next(); iter.next(); let sink = iter.collect::>(); let sinkptr = sink.as_ptr(); assert_eq!(srcptr, sinkptr); } // Getting the adapters to work here is going to require quite a bit of specialization voodoo using several // undocumented traits like `InPlaceIterable` // // #[cfg(feature = "minivec_nightly")] // #[test] // fn test_from_iter_specialization_with_iterator_adapters() { // fn assert_in_place_trait(_: &T) {} // let src: MiniVec = mini_vec![0usize; 256]; // let srcptr = src.as_ptr(); // let iter = src // .into_iter() // .enumerate() // .map(|i| i.0 + i.1) // .zip(std::iter::repeat(1usize)) // .map(|(a, b)| a + b) // .map_while(Option::Some) // .skip(1) // .map(|e| { // if e != usize::MAX { // Ok(std::num::NonZeroUsize::new(e)) // } else { // Err(()) // } // }); // assert_in_place_trait(&iter); // let sink = iter.collect::, _>>().unwrap(); // let sinkptr = sink.as_ptr(); // assert_eq!(srcptr, sinkptr as *const usize); // } // #[cfg(feature = "minivec_nightly")] // #[test] // fn test_from_iter_specialization_head_tail_drop() { // let drop_count: MiniVec<_> = (0..=2).map(|_| Rc::new(())).collect(); // let src: MiniVec<_> = drop_count.iter().cloned().collect(); // let srcptr = src.as_ptr(); // let iter = src.into_iter(); // let sink: MiniVec<_> = iter.skip(1).take(1).collect(); // let sinkptr = sink.as_ptr(); // assert_eq!(srcptr, sinkptr, "specialization was applied"); // assert_eq!(Rc::strong_count(&drop_count[0]), 1, "front was dropped"); // assert_eq!( // Rc::strong_count(&drop_count[1]), // 2, // "one element was collected" // ); // assert_eq!(Rc::strong_count(&drop_count[2]), 1, "tail was dropped"); // assert_eq!(sink.len(), 1); // } #[test] fn test_from_iter_specialization_panic_during_iteration_drops() { let drop_count: MiniVec<_> = (0..=2).map(|_| Rc::new(())).collect(); let src: MiniVec<_> = drop_count.iter().cloned().collect(); let iter = src.into_iter(); let _ = std::panic::catch_unwind(AssertUnwindSafe(|| { let _ = iter .enumerate() .filter_map(|(i, e)| { if i == 1 { std::panic!("aborting iteration"); } Some(e) }) .collect::>(); })); assert!( drop_count .iter() .map(Rc::strong_count) .all(|count| count == 1), "all items were dropped once" ); } // #[test] // fn test_from_iter_specialization_panic_during_drop_leaks() { // static mut DROP_COUNTER: usize = 0; // #[derive(Debug)] // enum Droppable { // DroppedTwice(Box), // PanicOnDrop, // } // impl Drop for Droppable { // fn drop(&mut self) { // match self { // Droppable::DroppedTwice(_) => { // unsafe { // DROP_COUNTER += 1; // } // println!("Dropping!") // } // Droppable::PanicOnDrop => { // if !std::thread::panicking() { // panic!(); // } // } // } // } // } // let mut to_free: *mut Droppable = core::ptr::null_mut(); // let mut cap = 0; // let _ = std::panic::catch_unwind(AssertUnwindSafe(|| { // let mut v = mini_vec![ // Droppable::DroppedTwice(Box::new(123)), // Droppable::PanicOnDrop, // ]; // to_free = v.as_mut_ptr(); // cap = v.capacity(); // let _ = v.into_iter().take(0).collect::>(); // })); // assert_eq!(unsafe { DROP_COUNTER }, 1); // // clean up the leak to keep miri happy // unsafe { // drop(Vec::from_raw_parts(to_free, 0, cap)); // } // } // regression test for issue #85322. Peekable previously implemented InPlaceIterable, // but due to an interaction with IntoIter's current Clone implementation it failed to uphold // the contract. #[test] fn test_collect_after_iterator_clone() { let v = mini_vec![0; 5]; let mut i = v.into_iter().map(|i| i + 1).peekable(); i.peek(); let v = i.clone().collect::>(); assert_eq!(v, [1, 1, 1, 1, 1]); assert!(v.len() <= v.capacity()); } // #[test] // fn test_cow_from() { // let borrowed: &[_] = &["borrowed", "(slice)"]; // let owned = mini_vec!["owned", "(vec)"]; // match (Cow::from(owned.clone()), Cow::from(borrowed)) { // (Cow::Owned(o), Cow::Borrowed(b)) => assert!(o == owned && b == borrowed), // _ => panic!("invalid `Cow::from`"), // } // } // #[test] // fn test_from_cow() { // let borrowed: &[_] = &["borrowed", "(slice)"]; // let owned = mini_vec!["owned", "(vec)"]; // assert_eq!( // MiniVec::from(Cow::Borrowed(borrowed)), // mini_vec!["borrowed", "(slice)"] // ); // assert_eq!(Vec::from(Cow::Owned(owned)), mini_vec!["owned", "(vec)"]); // } #[allow(dead_code)] fn assert_covariance() { fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> { d } fn into_iter<'new>(i: IntoIter<&'static str>) -> IntoIter<&'new str> { i } } #[cfg(feature = "minivec_nightly")] #[test] fn from_into_inner() { let vec = mini_vec![1, 2, 3]; let ptr = vec.as_ptr(); let vec = vec.into_iter().collect::>(); assert_eq!(vec, [1, 2, 3]); assert_eq!(vec.as_ptr(), ptr); let ptr = &vec[1] as *const _; let mut it = vec.into_iter(); it.next().unwrap(); let vec = it.collect::>(); assert_eq!(vec, [2, 3]); assert!(ptr != vec.as_ptr()); } #[test] fn overaligned_allocations() { #[repr(align(256))] struct Foo(usize); let mut v = mini_vec![Foo(273)]; for i in 0..0x1000 { v.reserve_exact(i); assert!(v[0].0 == 273); assert!(v.as_ptr() as usize & 0xff == 0); v.shrink_to_fit(); assert!(v[0].0 == 273); assert!(v.as_ptr() as usize & 0xff == 0); } } #[test] fn drain_filter_empty() { let mut vec: MiniVec = mini_vec![]; { let mut iter = vec.drain_filter(|_| true); assert_eq!(iter.size_hint(), (0, Some(0))); assert_eq!(iter.next(), None); assert_eq!(iter.size_hint(), (0, Some(0))); assert_eq!(iter.next(), None); assert_eq!(iter.size_hint(), (0, Some(0))); } assert_eq!(vec.len(), 0); assert_eq!(vec, mini_vec![]); } // #[test] // fn drain_filter_zst() { // let mut vec = mini_vec![(), (), (), (), ()]; // let initial_len = vec.len(); // let mut count = 0; // { // let mut iter = vec.drain_filter(|_| true); // assert_eq!(iter.size_hint(), (0, Some(initial_len))); // while let Some(_) = iter.next() { // count += 1; // assert_eq!(iter.size_hint(), (0, Some(initial_len - count))); // } // assert_eq!(iter.size_hint(), (0, Some(0))); // assert_eq!(iter.next(), None); // assert_eq!(iter.size_hint(), (0, Some(0))); // } // assert_eq!(count, initial_len); // assert_eq!(vec.len(), 0); // assert_eq!(vec, mini_vec![]); // } #[test] fn drain_filter_false() { let mut vec = mini_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; let initial_len = vec.len(); let mut count = 0; { let mut iter = vec.drain_filter(|_| false); assert_eq!(iter.size_hint(), (0, Some(initial_len))); for _ in iter.by_ref() { count += 1; } assert_eq!(iter.size_hint(), (0, Some(0))); assert_eq!(iter.next(), None); assert_eq!(iter.size_hint(), (0, Some(0))); } assert_eq!(count, 0); assert_eq!(vec.len(), initial_len); assert_eq!(vec, mini_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]); } #[test] fn drain_filter_true() { let mut vec = mini_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; let initial_len = vec.len(); let mut count = 0; { let mut iter = vec.drain_filter(|_| true); assert_eq!(iter.size_hint(), (0, Some(initial_len))); while let Some(_) = iter.next() { count += 1; assert_eq!(iter.size_hint(), (0, Some(initial_len - count))); } assert_eq!(iter.size_hint(), (0, Some(0))); assert_eq!(iter.next(), None); assert_eq!(iter.size_hint(), (0, Some(0))); } assert_eq!(count, initial_len); assert_eq!(vec.len(), 0); assert_eq!(vec, mini_vec![]); } #[test] fn drain_filter_complex() { { // [+xxx++++++xxxxx++++x+x++] let mut vec = mini_vec![ 1, 2, 4, 6, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24, 26, 27, 29, 31, 33, 34, 35, 36, 37, 39, ]; let removed = vec.drain_filter(|x| *x % 2 == 0).collect::>(); assert_eq!(removed.len(), 10); assert_eq!(removed, mini_vec![2, 4, 6, 18, 20, 22, 24, 26, 34, 36]); assert_eq!(vec.len(), 14); assert_eq!( vec, mini_vec![1, 7, 9, 11, 13, 15, 17, 27, 29, 31, 33, 35, 37, 39] ); } { // [xxx++++++xxxxx++++x+x++] let mut vec = mini_vec![ 2, 4, 6, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24, 26, 27, 29, 31, 33, 34, 35, 36, 37, 39, ]; let removed = vec.drain_filter(|x| *x % 2 == 0).collect::>(); assert_eq!(removed.len(), 10); assert_eq!(removed, mini_vec![2, 4, 6, 18, 20, 22, 24, 26, 34, 36]); assert_eq!(vec.len(), 13); assert_eq!( vec, mini_vec![7, 9, 11, 13, 15, 17, 27, 29, 31, 33, 35, 37, 39] ); } { // [xxx++++++xxxxx++++x+x] let mut vec = mini_vec![2, 4, 6, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24, 26, 27, 29, 31, 33, 34, 35, 36,]; let removed = vec.drain_filter(|x| *x % 2 == 0).collect::>(); assert_eq!(removed.len(), 10); assert_eq!(removed, mini_vec![2, 4, 6, 18, 20, 22, 24, 26, 34, 36]); assert_eq!(vec.len(), 11); assert_eq!(vec, mini_vec![7, 9, 11, 13, 15, 17, 27, 29, 31, 33, 35]); } { // [xxxxxxxxxx+++++++++++] let mut vec = mini_vec![2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19,]; let removed = vec.drain_filter(|x| *x % 2 == 0).collect::>(); assert_eq!(removed.len(), 10); assert_eq!(removed, mini_vec![2, 4, 6, 8, 10, 12, 14, 16, 18, 20]); assert_eq!(vec.len(), 10); assert_eq!(vec, mini_vec![1, 3, 5, 7, 9, 11, 13, 15, 17, 19]); } { // [+++++++++++xxxxxxxxxx] let mut vec = mini_vec![1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,]; let removed = vec.drain_filter(|x| *x % 2 == 0).collect::>(); assert_eq!(removed.len(), 10); assert_eq!(removed, mini_vec![2, 4, 6, 8, 10, 12, 14, 16, 18, 20]); assert_eq!(vec.len(), 10); assert_eq!(vec, mini_vec![1, 3, 5, 7, 9, 11, 13, 15, 17, 19]); } } // FIXME: re-enable emscripten once it can unwind again #[test] #[cfg(not(target_os = "emscripten"))] fn drain_filter_consumed_panic() { use std::rc::Rc; use std::sync::Mutex; struct Check { index: usize, drop_counts: Rc>>, } impl Drop for Check { fn drop(&mut self) { self.drop_counts.lock().unwrap()[self.index] += 1; println!("drop: {}", self.index); } } let check_count = 10; let drop_counts = Rc::new(Mutex::new(mini_vec![0_usize; check_count])); let mut data: MiniVec = (0..check_count) .map(|index| Check { index, drop_counts: Rc::clone(&drop_counts), }) .collect(); let _ = std::panic::catch_unwind(move || { let filter = |c: &mut Check| { if c.index == 2 { panic!("panic at index: {}", c.index); } // Verify that if the filter could panic again on another element // that it would not cause a double panic and all elements of the // vec would still be dropped exactly once. if c.index == 4 { panic!("panic at index: {}", c.index); } c.index < 6 }; let drain = data.drain_filter(filter); // NOTE: The DrainFilter is explicitly consumed drain.for_each(drop); }); let drop_counts = drop_counts.lock().unwrap(); assert_eq!(check_count, drop_counts.len()); for (index, count) in drop_counts.iter().cloned().enumerate() { assert_eq!( 1, count, "unexpected drop count at index: {} (count: {})", index, count ); } } // FIXME: Re-enable emscripten once it can catch panics #[test] #[cfg(not(target_os = "emscripten"))] fn drain_filter_unconsumed_panic() { use std::rc::Rc; use std::sync::Mutex; struct Check { index: usize, drop_counts: Rc>>, } impl Drop for Check { fn drop(&mut self) { self.drop_counts.lock().unwrap()[self.index] += 1; println!("drop: {}", self.index); } } let check_count = 10; let drop_counts = Rc::new(Mutex::new(mini_vec![0_usize; check_count])); let mut data: MiniVec = (0..check_count) .map(|index| Check { index, drop_counts: Rc::clone(&drop_counts), }) .collect(); let _ = std::panic::catch_unwind(move || { let filter = |c: &mut Check| { if c.index == 2 { panic!("panic at index: {}", c.index); } // Verify that if the filter could panic again on another element // that it would not cause a double panic and all elements of the // vec would still be dropped exactly once. if c.index == 4 { panic!("panic at index: {}", c.index); } c.index < 6 }; let _drain = data.drain_filter(filter); // NOTE: The DrainFilter is dropped without being consumed }); let drop_counts = drop_counts.lock().unwrap(); assert_eq!(check_count, drop_counts.len()); for (index, count) in drop_counts.iter().cloned().enumerate() { assert_eq!( 1, count, "unexpected drop count at index: {} (count: {})", index, count ); } } #[test] fn drain_filter_unconsumed() { let mut vec = mini_vec![1, 2, 3, 4]; let drain = vec.drain_filter(|&mut x| x % 2 != 0); drop(drain); assert_eq!(vec, [2, 4]); } #[test] fn test_reserve_exact() { // This is all the same as test_reserve let mut v = Vec::new(); assert_eq!(v.capacity(), 0); v.reserve_exact(2); assert!(v.capacity() >= 2); for i in 0..16 { v.push(i); } assert!(v.capacity() >= 16); v.reserve_exact(16); assert!(v.capacity() >= 32); v.push(16); v.reserve_exact(16); assert!(v.capacity() >= 33) } #[test] #[cfg_attr(miri, ignore)] // Miri does not support signalling OOM fn test_try_reserve() { use minivec::TryReserveErrorKind::*; // These are the interesting cases: // * exactly isize::MAX should never trigger a CapacityOverflow (can be OOM) // * > isize::MAX should always fail // * On 16/32-bit should CapacityOverflow // * On 64-bit should OOM // * overflow may trigger when adding `len` to `cap` (in number of elements) // * overflow may trigger when multiplying `new_cap` by size_of:: (to get bytes) const MAX_CAP: usize = (isize::MAX as usize - 7) - 16; const MAX_USIZE: usize = usize::MAX; { // Note: basic stuff is checked by test_reserve let mut empty_bytes: MiniVec = MiniVec::new(); // Check isize::MAX doesn't count as an overflow if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP).map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } // Play it again, frank! (just to be sure) if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP).map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } // Check isize::MAX + 1 does count as overflow if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP + 1).map_err(|e| e.kind()) { } else { panic!("isize::MAX + 1 should trigger an overflow!"); } // Check usize::MAX does count as overflow if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_USIZE).map_err(|e| e.kind()) { } else { panic!("usize::MAX should trigger an overflow!"); } } { // Same basic idea, but with non-zero len let mut ten_bytes: MiniVec = mini_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10).map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10).map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 9).map_err(|e| e.kind()) { } else { panic!("isize::MAX + 1 should trigger an overflow!"); } // Should always overflow in the add-to-len if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_USIZE).map_err(|e| e.kind()) { } else { panic!("usize::MAX should trigger an overflow!"); } } { // Same basic idea, but with interesting type size let mut ten_u32s: MiniVec = mini_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP / 4 - 10).map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP / 4 - 10).map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP / 4 - 9).map_err(|e| e.kind()) { } else { panic!("isize::MAX + 1 should trigger an overflow!"); } // Should fail in the mul-by-size if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_USIZE - 20).map_err(|e| e.kind()) { } else { panic!("usize::MAX should trigger an overflow!"); } } } #[test] #[cfg_attr(miri, ignore)] // Miri does not support signalling OOM fn test_try_reserve_exact() { use minivec::TryReserveErrorKind::*; // This is exactly the same as test_try_reserve with the method changed. // See that test for comments. const MAX_CAP: usize = (isize::MAX as usize - 7) - 16; const MAX_USIZE: usize = usize::MAX; { let mut empty_bytes: MiniVec = MiniVec::new(); if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP).map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP).map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = empty_bytes .try_reserve_exact(MAX_CAP + 1) .map_err(|e| e.kind()) { } else { panic!("isize::MAX + 1 should trigger an overflow!"); } if let Err(CapacityOverflow) = empty_bytes .try_reserve_exact(MAX_USIZE) .map_err(|e| e.kind()) { } else { panic!("usize::MAX should trigger an overflow!"); } } { let mut ten_bytes: MiniVec = mini_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; if let Err(CapacityOverflow) = ten_bytes .try_reserve_exact(MAX_CAP - 10) .map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_bytes .try_reserve_exact(MAX_CAP - 10) .map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_bytes .try_reserve_exact(MAX_CAP - 9) .map_err(|e| e.kind()) { } else { panic!("isize::MAX + 1 should trigger an overflow!"); } if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_USIZE).map_err(|e| e.kind()) { } else { panic!("usize::MAX should trigger an overflow!"); } } { let mut ten_u32s: MiniVec = mini_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; if let Err(CapacityOverflow) = ten_u32s .try_reserve_exact(MAX_CAP / 4 - 10) .map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_u32s .try_reserve_exact(MAX_CAP / 4 - 10) .map_err(|e| e.kind()) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_u32s .try_reserve_exact(MAX_CAP / 4 - 9) .map_err(|e| e.kind()) { } else { panic!("isize::MAX + 1 should trigger an overflow!"); } if let Err(CapacityOverflow) = ten_u32s .try_reserve_exact(MAX_USIZE - 20) .map_err(|e| e.kind()) { } else { panic!("usize::MAX should trigger an overflow!"); } } } #[test] fn test_stable_pointers() { /// Pull an element from the iterator, then drop it. /// Useful to cover both the `next` and `drop` paths of an iterator. fn next_then_drop(mut i: I) { i.next().unwrap(); drop(i); } // Test that, if we reserved enough space, adding and removing elements does not // invalidate references into the vector (such as `v0`). This test also // runs in Miri, which would detect such problems. // Note that this test does *not* constitute a stable guarantee that all these functions do not // reallocate! Only what is explicitly documented at // is stably guaranteed. let mut v = MiniVec::with_capacity(128); v.push(13); // Laundering the lifetime -- we take care that `v` does not reallocate, so that's okay. let v0 = &mut v[0]; let v0 = unsafe { &mut *(v0 as *mut _) }; // Now do a bunch of things and occasionally use `v0` again to assert it is still valid. // Pushing/inserting and popping/removing v.push(1); v.push(2); v.insert(1, 1); assert_eq!(*v0, 13); v.remove(1); v.pop().unwrap(); assert_eq!(*v0, 13); v.push(1); v.swap_remove(1); assert_eq!(v.len(), 2); v.swap_remove(1); // swap_remove the last element assert_eq!(*v0, 13); // Appending v.append(&mut mini_vec![27, 19]); assert_eq!(*v0, 13); // Extending v.extend_from_slice(&[1, 2]); v.extend(&[1, 2]); // `slice::Iter` (with `T: Copy`) specialization v.extend(mini_vec![2, 3]); // `vec::IntoIter` specialization v.extend(std::iter::once(3)); // `TrustedLen` specialization v.extend(std::iter::empty::()); // `TrustedLen` specialization with empty iterator v.extend(std::iter::once(3).filter(|_| true)); // base case v.extend(std::iter::once(&3)); // `cloned` specialization assert_eq!(*v0, 13); // Truncation v.truncate(2); assert_eq!(*v0, 13); // Resizing v.resize_with(v.len() + 10, || 42); assert_eq!(*v0, 13); v.resize_with(2, || panic!()); assert_eq!(*v0, 13); // No-op reservation v.reserve(32); v.reserve_exact(32); assert_eq!(*v0, 13); // Partial draining v.resize_with(10, || 42); next_then_drop(v.drain(5..)); assert_eq!(*v0, 13); // Splicing v.resize_with(10, || 42); next_then_drop(v.splice(5.., mini_vec![1, 2, 3, 4, 5])); // empty tail after range assert_eq!(*v0, 13); next_then_drop(v.splice(5..8, mini_vec![1])); // replacement is smaller than original range assert_eq!(*v0, 13); next_then_drop(v.splice(5..6, mini_vec![1; 10].into_iter().filter(|_| true))); // lower bound not exact assert_eq!(*v0, 13); // spare_capacity_mut v.spare_capacity_mut(); assert_eq!(*v0, 13); // Smoke test that would fire even outside Miri if an actual relocation happened. *v0 -= 13; assert_eq!(v[0], 0); } // https://github.com/rust-lang/rust/pull/49496 introduced specialization based on: // // ``` // unsafe impl IsZero for *mut T { // fn is_zero(&self) -> bool { // (*self).is_null() // } // } // ``` // // … to call `RawVec::with_capacity_zeroed` for creating `Vec<*mut T>`, // which is incorrect for fat pointers since `<*mut T>::is_null` only looks at the data component. // That is, a fat pointer can be “null” without being made entirely of zero bits. #[test] fn vec_macro_repeating_null_raw_fat_pointer() { let raw_dyn = &mut (|| ()) as &mut dyn Fn() as *mut dyn Fn(); let vtable = dbg!(ptr_metadata(raw_dyn)); let null_raw_dyn = ptr_from_raw_parts(std::ptr::null_mut(), vtable); assert!(null_raw_dyn.is_null()); let vec = mini_vec![null_raw_dyn; 1]; dbg!(ptr_metadata(vec[0])); assert!(std::ptr::addr_eq(vec[0], null_raw_dyn)); // Polyfill for https://github.com/rust-lang/rfcs/pull/2580 fn ptr_metadata(ptr: *mut dyn Fn()) -> *mut () { unsafe { std::mem::transmute::<*mut dyn Fn(), DynRepr>(ptr).vtable } } fn ptr_from_raw_parts(data: *mut (), vtable: *mut ()) -> *mut dyn Fn() { unsafe { std::mem::transmute::(DynRepr { data, vtable }) } } #[repr(C)] struct DynRepr { data: *mut (), vtable: *mut (), } } // This test will likely fail if you change the capacities used in // `RawVec::grow_amortized`. #[test] fn test_push_growth_strategy() { // If the element size is 1, we jump from 0 to 8, then double. { let mut v1: MiniVec = mini_vec![]; for _ in 0..8 { v1.push(0); assert_eq!(v1.capacity(), 8); } for _ in 8..16 { v1.push(0); assert_eq!(v1.capacity(), 16); } for _ in 16..32 { v1.push(0); assert_eq!(v1.capacity(), 32); } for _ in 32..64 { v1.push(0); assert_eq!(v1.capacity(), 64); } } // If the element size is 2..=1024, we jump from 0 to 4, then double. { let mut v2: MiniVec = mini_vec![]; let mut v1024: MiniVec<[u8; 1024]> = mini_vec![]; for _ in 0..4 { v2.push(0); v1024.push([0; 1024]); assert_eq!(v2.capacity(), 4); assert_eq!(v1024.capacity(), 4); } for _ in 4..8 { v2.push(0); v1024.push([0; 1024]); assert_eq!(v2.capacity(), 8); assert_eq!(v1024.capacity(), 8); } for _ in 8..16 { v2.push(0); v1024.push([0; 1024]); assert_eq!(v2.capacity(), 16); assert_eq!(v1024.capacity(), 16); } for _ in 16..32 { v2.push(0); v1024.push([0; 1024]); assert_eq!(v2.capacity(), 32); assert_eq!(v1024.capacity(), 32); } for _ in 32..64 { v2.push(0); v1024.push([0; 1024]); assert_eq!(v2.capacity(), 64); assert_eq!(v1024.capacity(), 64); } } // If the element size is > 1024, we jump from 0 to 1, then double. { let mut v1025: MiniVec<[u8; 1025]> = mini_vec![]; for _ in 0..1 { v1025.push([0; 1025]); assert_eq!(v1025.capacity(), 1); } for _ in 1..2 { v1025.push([0; 1025]); assert_eq!(v1025.capacity(), 2); } for _ in 2..4 { v1025.push([0; 1025]); assert_eq!(v1025.capacity(), 4); } for _ in 4..8 { v1025.push([0; 1025]); assert_eq!(v1025.capacity(), 8); } for _ in 8..16 { v1025.push([0; 1025]); assert_eq!(v1025.capacity(), 16); } for _ in 16..32 { v1025.push([0; 1025]); assert_eq!(v1025.capacity(), 32); } for _ in 32..64 { v1025.push([0; 1025]); assert_eq!(v1025.capacity(), 64); } } } macro_rules! generate_assert_eq_vec_and_prim { ($name:ident<$B:ident>($type:ty)) => { fn $name + Debug, $B: Debug>(a: MiniVec, b: $type) { assert!(a == b); assert_eq!(a, b); } }; } generate_assert_eq_vec_and_prim! { assert_eq_vec_and_slice (&[B]) } generate_assert_eq_vec_and_prim! { assert_eq_vec_and_array_3([B; 3]) } #[test] fn partialeq_vec_and_prim() { assert_eq_vec_and_slice(mini_vec![1, 2, 3], &[1, 2, 3]); assert_eq_vec_and_array_3(mini_vec![1, 2, 3], [1, 2, 3]); } macro_rules! assert_partial_eq_valid { ($a2:expr, $a3:expr; $b2:expr, $b3: expr) => { assert!($a2 == $b2); assert!($a2 != $b3); assert!($a3 != $b2); assert!($a3 == $b3); assert_eq!($a2, $b2); assert_ne!($a2, $b3); assert_ne!($a3, $b2); assert_eq!($a3, $b3); }; } #[test] fn partialeq_vec_full() { let vec2: MiniVec<_> = mini_vec![1, 2]; let vec3: MiniVec<_> = mini_vec![1, 2, 3]; let slice2: &[_] = &[1, 2]; let slice3: &[_] = &[1, 2, 3]; let slicemut2: &[_] = &mut [1, 2]; let slicemut3: &[_] = &mut [1, 2, 3]; let array2: [_; 2] = [1, 2]; let array3: [_; 3] = [1, 2, 3]; let arrayref2: &[_; 2] = &[1, 2]; let arrayref3: &[_; 3] = &[1, 2, 3]; assert_partial_eq_valid!(vec2,vec3; vec2,vec3); assert_partial_eq_valid!(vec2,vec3; slice2,slice3); assert_partial_eq_valid!(vec2,vec3; slicemut2,slicemut3); assert_partial_eq_valid!(slice2,slice3; vec2,vec3); assert_partial_eq_valid!(slicemut2,slicemut3; vec2,vec3); assert_partial_eq_valid!(vec2,vec3; array2,array3); assert_partial_eq_valid!(vec2,vec3; arrayref2,arrayref3); assert_partial_eq_valid!(vec2,vec3; arrayref2[..],arrayref3[..]); } // this test requires the #[may_dangle] attribute // // #[test] // fn test_vec_cycle() { // #[derive(Debug)] // struct C<'a> { // v: MiniVec>>>, // } // impl<'a> C<'a> { // fn new() -> C<'a> { // C { v: MiniVec::new() } // } // } // let mut c1 = C::new(); // let mut c2 = C::new(); // let mut c3 = C::new(); // // Push // c1.v.push(Cell::new(None)); // c1.v.push(Cell::new(None)); // c2.v.push(Cell::new(None)); // c2.v.push(Cell::new(None)); // c3.v.push(Cell::new(None)); // c3.v.push(Cell::new(None)); // // Set // c1.v[0].set(Some(&c2)); // c1.v[1].set(Some(&c3)); // c2.v[0].set(Some(&c2)); // c2.v[1].set(Some(&c3)); // c3.v[0].set(Some(&c1)); // c3.v[1].set(Some(&c2)); // } // this test requires the #[may_dangle] attribute // // #[test] // fn test_vec_cycle_wrapped() { // struct Refs<'a> { // v: MiniVec>>>, // } // struct C<'a> { // refs: Refs<'a>, // } // impl<'a> Refs<'a> { // fn new() -> Refs<'a> { // Refs { v: MiniVec::new() } // } // } // impl<'a> C<'a> { // fn new() -> C<'a> { // C { refs: Refs::new() } // } // } // let mut c1 = C::new(); // let mut c2 = C::new(); // let mut c3 = C::new(); // c1.refs.v.push(Cell::new(None)); // c1.refs.v.push(Cell::new(None)); // c2.refs.v.push(Cell::new(None)); // c2.refs.v.push(Cell::new(None)); // c3.refs.v.push(Cell::new(None)); // c3.refs.v.push(Cell::new(None)); // c1.refs.v[0].set(Some(&c2)); // c1.refs.v[1].set(Some(&c3)); // c2.refs.v[0].set(Some(&c2)); // c2.refs.v[1].set(Some(&c3)); // c3.refs.v[0].set(Some(&c1)); // c3.refs.v[1].set(Some(&c2)); // } #[test] fn test_zero_sized_vec_push() { const N: usize = 8; for len in 0..N { let mut tester = Vec::with_capacity(len); assert_eq!(tester.len(), 0); assert!(tester.capacity() >= len); for _ in 0..len { tester.push(()); } assert_eq!(tester.len(), len); assert_eq!(tester.iter().count(), len); tester.clear(); } } #[test] fn test_vec_macro_repeat() { assert_eq!(mini_vec![1; 3], mini_vec![1, 1, 1]); assert_eq!(mini_vec![1; 2], mini_vec![1, 1]); assert_eq!(mini_vec![1; 1], mini_vec![1]); assert_eq!(mini_vec![1; 0], mini_vec![]); // from_elem syntax (see RFC 832) let el = Box::new(1); let n = 3; assert_eq!( mini_vec![el; n], mini_vec![Box::new(1), Box::new(1), Box::new(1)] ); } #[test] fn test_vec_swap() { let mut a: MiniVec = mini_vec![0, 1, 2, 3, 4, 5, 6]; a.swap(2, 4); assert_eq!(a[2], 4); assert_eq!(a[4], 2); let mut n = 42; swap(&mut n, &mut a[0]); assert_eq!(a[0], 42); assert_eq!(n, 0); } // this test requires specialization // // #[test] // fn test_extend_from_within_spec() { // #[derive(Copy)] // struct CopyOnly; // impl Clone for CopyOnly { // fn clone(&self) -> Self { // panic!("extend_from_within must use specialization on copy"); // } // } // mini_vec![CopyOnly, CopyOnly].extend_from_within(..); // } #[test] fn test_extend_from_within_clone() { let mut v = mini_vec![ String::from("sssss"), String::from("12334567890"), String::from("c"), ]; v.extend_from_within(1..); assert_eq!(v, ["sssss", "12334567890", "c", "12334567890", "c"]); } #[test] fn test_extend_from_within_complete_rande() { let mut v = mini_vec![0, 1, 2, 3]; v.extend_from_within(..); assert_eq!(v, [0, 1, 2, 3, 0, 1, 2, 3]); } #[test] fn test_extend_from_within_empty_rande() { let mut v = mini_vec![0, 1, 2, 3]; v.extend_from_within(1..1); assert_eq!(v, [0, 1, 2, 3]); } #[test] #[should_panic] fn test_extend_from_within_out_of_rande() { let mut v = mini_vec![0, 1]; v.extend_from_within(..3); } // #[test] // fn test_extend_from_within_zst() { // let mut v = mini_vec![(); 8]; // v.extend_from_within(3..7); // assert_eq!(v, [(); 12]); // } #[test] fn test_extend_from_within_empty_vec() { let mut v = Vec::::new(); v.extend_from_within(..); assert_eq!(v, []); } #[test] fn test_extend_from_within() { let mut v = mini_vec![String::from("a"), String::from("b"), String::from("c")]; v.extend_from_within(1..=2); v.extend_from_within(..=1); assert_eq!(v, ["a", "b", "c", "b", "c", "a", "b"]); } #[test] fn test_vec_dedup_by() { let mut vec: MiniVec = mini_vec![1, -1, 2, 3, 1, -5, 5, -2, 2]; vec.dedup_by(|a, b| a.abs() == b.abs()); assert_eq!(vec, [1, 2, 3, 1, -5, -2]); } #[test] fn test_vec_dedup_empty() { let mut vec: MiniVec = MiniVec::new(); vec.dedup(); assert_eq!(vec, []); } #[test] fn test_vec_dedup_one() { let mut vec = mini_vec![12i32]; vec.dedup(); assert_eq!(vec, [12]); } #[test] fn test_vec_dedup_multiple_ident() { let mut vec = mini_vec![12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11]; vec.dedup(); assert_eq!(vec, [12, 11]); } #[test] fn test_vec_dedup_partialeq() { #[allow(dead_code)] #[derive(Debug)] struct Foo(i32, i32); impl PartialEq for Foo { fn eq(&self, other: &Foo) -> bool { self.0 == other.0 } } let mut vec = mini_vec![Foo(0, 1), Foo(0, 5), Foo(1, 7), Foo(1, 9)]; vec.dedup(); assert_eq!(vec, [Foo(0, 1), Foo(1, 7)]); } // #[test] // fn test_vec_dedup() { // let mut vec: MiniVec = MiniVec::with_capacity(8); // let mut template = vec.clone(); // for x in 0u8..255u8 { // vec.clear(); // template.clear(); // let iter = (0..8).map(move |bit| (x >> bit) & 1 == 1); // vec.extend(iter); // template.extend_from_slice(&vec); // let (dedup, _) = template.partition_dedup(); // vec.dedup(); // assert_eq!(vec, dedup); // } // } #[test] fn test_vec_dedup_panicking() { #[derive(Debug)] struct Panic<'a> { drop_counter: &'a Cell, value: bool, index: usize, } impl<'a> PartialEq for Panic<'a> { fn eq(&self, other: &Self) -> bool { self.value == other.value } } impl<'a> Drop for Panic<'a> { fn drop(&mut self) { self.drop_counter.set(self.drop_counter.get() + 1); if !std::thread::panicking() { assert!(self.index != 4); } } } let drop_counter = &Cell::new(0); let expected = [ Panic { drop_counter, value: false, index: 0, }, Panic { drop_counter, value: false, index: 5, }, Panic { drop_counter, value: true, index: 6, }, Panic { drop_counter, value: true, index: 7, }, ]; let mut vec = mini_vec![ Panic { drop_counter, value: false, index: 0, }, // these elements get deduplicated Panic { drop_counter, value: false, index: 1, }, Panic { drop_counter, value: false, index: 2, }, Panic { drop_counter, value: false, index: 3, }, Panic { drop_counter, value: false, index: 4, }, // here it panics while dropping the item with index==4 Panic { drop_counter, value: false, index: 5, }, Panic { drop_counter, value: true, index: 6, }, Panic { drop_counter, value: true, index: 7, }, ]; let _ = catch_unwind(AssertUnwindSafe(|| vec.dedup())).unwrap_err(); assert_eq!(drop_counter.get(), 4); let ok = vec .iter() .zip(expected.iter()) .all(|(x, y)| x.index == y.index); if !ok { panic!("expected: {:?}\ngot: {:?}\n", expected, vec); } } // Regression test for issue #82533 #[test] fn test_extend_from_within_panicing_clone() { struct Panic<'dc> { drop_count: &'dc AtomicU32, aaaaa: bool, } impl Clone for Panic<'_> { fn clone(&self) -> Self { if self.aaaaa { panic!("panic! at the clone"); } Self { ..*self } } } impl Drop for Panic<'_> { fn drop(&mut self) { self.drop_count.fetch_add(1, Ordering::SeqCst); } } let count = core::sync::atomic::AtomicU32::new(0); let mut vec = mini_vec![ Panic { drop_count: &count, aaaaa: false, }, Panic { drop_count: &count, aaaaa: true, }, Panic { drop_count: &count, aaaaa: false, }, ]; // This should clone&append one Panic{..} at the end, and then panic while // cloning second Panic{..}. This means that `Panic::drop` should be called // 4 times (3 for items already in vector, 1 for just appended). // // Previously just appended item was leaked, making drop_count = 3, instead of 4. std::panic::catch_unwind(move || vec.extend_from_within(..)).unwrap_err(); assert_eq!(count.load(Ordering::SeqCst), 4); }