/* --------------------------------------------------------------------------- Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved. The redistribution and use of this software (with or without changes) is allowed without the payment of fees or royalties provided that: source code distributions include the above copyright notice, this list of conditions and the following disclaimer; binary distributions include the above copyright notice, this list of conditions and the following disclaimer in their documentation. This software is provided 'as is' with no explicit or implied warranties in respect of its operation, including, but not limited to, correctness and fitness for purpose. --------------------------------------------------------------------------- Issue Date: 20/12/2007 */ #include "aesopt.h" #include "aestab.h" #if defined( USE_INTEL_AES_IF_PRESENT ) # include "aes_ni.h" #else /* map names here to provide the external API ('name' -> 'aes_name') */ # define aes_xi(x) aes_ ## x #endif #ifdef USE_VIA_ACE_IF_PRESENT # include "aes_via_ace.h" #endif #if defined(__cplusplus) extern "C" { #endif /* Initialise the key schedule from the user supplied key. The key length can be specified in bytes, with legal values of 16, 24 and 32, or in bits, with legal values of 128, 192 and 256. These values correspond with Nk values of 4, 6 and 8 respectively. The following macros implement a single cycle in the key schedule generation process. The number of cycles needed for each cx->n_col and nk value is: nk = 4 5 6 7 8 ------------------------------ cx->n_col = 4 10 9 8 7 7 cx->n_col = 5 14 11 10 9 9 cx->n_col = 6 19 15 12 11 11 cx->n_col = 7 21 19 16 13 14 cx->n_col = 8 29 23 19 17 14 */ #if defined( REDUCE_CODE_SIZE ) # define ls_box ls_sub uint32_t ls_sub(const uint32_t t, const uint32_t n); # define inv_mcol im_sub uint32_t im_sub(const uint32_t x); # ifdef ENC_KS_UNROLL # undef ENC_KS_UNROLL # endif # ifdef DEC_KS_UNROLL # undef DEC_KS_UNROLL # endif #endif #if (FUNCS_IN_C & ENC_KEYING_IN_C) #if defined(AES_128) || defined( AES_VAR ) #define ke4(k,i) \ { k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \ k[4*(i)+5] = ss[1] ^= ss[0]; \ k[4*(i)+6] = ss[2] ^= ss[1]; \ k[4*(i)+7] = ss[3] ^= ss[2]; \ } AES_RETURN aes_xi(encrypt_key128)(const unsigned char *key, aes_encrypt_ctx cx[1]) { uint32_t ss[4]; cx->ks[0] = ss[0] = word_in(key, 0); cx->ks[1] = ss[1] = word_in(key, 1); cx->ks[2] = ss[2] = word_in(key, 2); cx->ks[3] = ss[3] = word_in(key, 3); #ifdef ENC_KS_UNROLL ke4(cx->ks, 0); ke4(cx->ks, 1); ke4(cx->ks, 2); ke4(cx->ks, 3); ke4(cx->ks, 4); ke4(cx->ks, 5); ke4(cx->ks, 6); ke4(cx->ks, 7); ke4(cx->ks, 8); #else { uint32_t i; for(i = 0; i < 9; ++i) ke4(cx->ks, i); } #endif ke4(cx->ks, 9); cx->inf.l = 0; cx->inf.b[0] = 10 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif return EXIT_SUCCESS; } #endif #if defined(AES_192) || defined( AES_VAR ) #define kef6(k,i) \ { k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \ k[6*(i)+ 7] = ss[1] ^= ss[0]; \ k[6*(i)+ 8] = ss[2] ^= ss[1]; \ k[6*(i)+ 9] = ss[3] ^= ss[2]; \ } #define ke6(k,i) \ { kef6(k,i); \ k[6*(i)+10] = ss[4] ^= ss[3]; \ k[6*(i)+11] = ss[5] ^= ss[4]; \ } AES_RETURN aes_xi(encrypt_key192)(const unsigned char *key, aes_encrypt_ctx cx[1]) { uint32_t ss[6]; cx->ks[0] = ss[0] = word_in(key, 0); cx->ks[1] = ss[1] = word_in(key, 1); cx->ks[2] = ss[2] = word_in(key, 2); cx->ks[3] = ss[3] = word_in(key, 3); cx->ks[4] = ss[4] = word_in(key, 4); cx->ks[5] = ss[5] = word_in(key, 5); #ifdef ENC_KS_UNROLL ke6(cx->ks, 0); ke6(cx->ks, 1); ke6(cx->ks, 2); ke6(cx->ks, 3); ke6(cx->ks, 4); ke6(cx->ks, 5); ke6(cx->ks, 6); #else { uint32_t i; for(i = 0; i < 7; ++i) ke6(cx->ks, i); } #endif kef6(cx->ks, 7); cx->inf.l = 0; cx->inf.b[0] = 12 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif return EXIT_SUCCESS; } #endif #if defined(AES_256) || defined( AES_VAR ) #define kef8(k,i) \ { k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \ k[8*(i)+ 9] = ss[1] ^= ss[0]; \ k[8*(i)+10] = ss[2] ^= ss[1]; \ k[8*(i)+11] = ss[3] ^= ss[2]; \ } #define ke8(k,i) \ { kef8(k,i); \ k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \ k[8*(i)+13] = ss[5] ^= ss[4]; \ k[8*(i)+14] = ss[6] ^= ss[5]; \ k[8*(i)+15] = ss[7] ^= ss[6]; \ } AES_RETURN aes_xi(encrypt_key256)(const unsigned char *key, aes_encrypt_ctx cx[1]) { uint32_t ss[8]; cx->ks[0] = ss[0] = word_in(key, 0); cx->ks[1] = ss[1] = word_in(key, 1); cx->ks[2] = ss[2] = word_in(key, 2); cx->ks[3] = ss[3] = word_in(key, 3); cx->ks[4] = ss[4] = word_in(key, 4); cx->ks[5] = ss[5] = word_in(key, 5); cx->ks[6] = ss[6] = word_in(key, 6); cx->ks[7] = ss[7] = word_in(key, 7); #ifdef ENC_KS_UNROLL ke8(cx->ks, 0); ke8(cx->ks, 1); ke8(cx->ks, 2); ke8(cx->ks, 3); ke8(cx->ks, 4); ke8(cx->ks, 5); #else { uint32_t i; for(i = 0; i < 6; ++i) ke8(cx->ks, i); } #endif kef8(cx->ks, 6); cx->inf.l = 0; cx->inf.b[0] = 14 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif return EXIT_SUCCESS; } #endif #endif #if (FUNCS_IN_C & DEC_KEYING_IN_C) /* this is used to store the decryption round keys */ /* in forward or reverse order */ #ifdef AES_REV_DKS #define v(n,i) ((n) - (i) + 2 * ((i) & 3)) #else #define v(n,i) (i) #endif #if DEC_ROUND == NO_TABLES #define ff(x) (x) #else #define ff(x) inv_mcol(x) #if defined( dec_imvars ) #define d_vars dec_imvars #endif #endif #if defined(AES_128) || defined( AES_VAR ) #define k4e(k,i) \ { k[v(40,(4*(i))+4)] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \ k[v(40,(4*(i))+5)] = ss[1] ^= ss[0]; \ k[v(40,(4*(i))+6)] = ss[2] ^= ss[1]; \ k[v(40,(4*(i))+7)] = ss[3] ^= ss[2]; \ } #if 1 #define kdf4(k,i) \ { ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \ ss[1] = ss[1] ^ ss[3]; \ ss[2] = ss[2] ^ ss[3]; \ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \ ss[i % 4] ^= ss[4]; \ ss[4] ^= k[v(40,(4*(i)))]; k[v(40,(4*(i))+4)] = ff(ss[4]); \ ss[4] ^= k[v(40,(4*(i))+1)]; k[v(40,(4*(i))+5)] = ff(ss[4]); \ ss[4] ^= k[v(40,(4*(i))+2)]; k[v(40,(4*(i))+6)] = ff(ss[4]); \ ss[4] ^= k[v(40,(4*(i))+3)]; k[v(40,(4*(i))+7)] = ff(ss[4]); \ } #define kd4(k,i) \ { ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \ ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \ k[v(40,(4*(i))+4)] = ss[4] ^= k[v(40,(4*(i)))]; \ k[v(40,(4*(i))+5)] = ss[4] ^= k[v(40,(4*(i))+1)]; \ k[v(40,(4*(i))+6)] = ss[4] ^= k[v(40,(4*(i))+2)]; \ k[v(40,(4*(i))+7)] = ss[4] ^= k[v(40,(4*(i))+3)]; \ } #define kdl4(k,i) \ { ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \ k[v(40,(4*(i))+4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \ k[v(40,(4*(i))+5)] = ss[1] ^ ss[3]; \ k[v(40,(4*(i))+6)] = ss[0]; \ k[v(40,(4*(i))+7)] = ss[1]; \ } #else #define kdf4(k,i) \ { ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ff(ss[0]); \ ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ff(ss[1]); \ ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ff(ss[2]); \ ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ff(ss[3]); \ } #define kd4(k,i) \ { ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \ ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[v(40,(4*(i))+ 4)] = ss[4] ^= k[v(40,(4*(i)))]; \ ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[4] ^= k[v(40,(4*(i))+ 1)]; \ ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[4] ^= k[v(40,(4*(i))+ 2)]; \ ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[4] ^= k[v(40,(4*(i))+ 3)]; \ } #define kdl4(k,i) \ { ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ss[0]; \ ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[1]; \ ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[2]; \ ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[3]; \ } #endif AES_RETURN aes_xi(decrypt_key128)(const unsigned char *key, aes_decrypt_ctx cx[1]) { uint32_t ss[5]; #if defined( d_vars ) d_vars; #endif cx->ks[v(40,(0))] = ss[0] = word_in(key, 0); cx->ks[v(40,(1))] = ss[1] = word_in(key, 1); cx->ks[v(40,(2))] = ss[2] = word_in(key, 2); cx->ks[v(40,(3))] = ss[3] = word_in(key, 3); #ifdef DEC_KS_UNROLL kdf4(cx->ks, 0); kd4(cx->ks, 1); kd4(cx->ks, 2); kd4(cx->ks, 3); kd4(cx->ks, 4); kd4(cx->ks, 5); kd4(cx->ks, 6); kd4(cx->ks, 7); kd4(cx->ks, 8); kdl4(cx->ks, 9); #else { uint32_t i; for(i = 0; i < 10; ++i) k4e(cx->ks, i); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 10 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #endif cx->inf.l = 0; cx->inf.b[0] = 10 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif return EXIT_SUCCESS; } #endif #if defined(AES_192) || defined( AES_VAR ) #define k6ef(k,i) \ { k[v(48,(6*(i))+ 6)] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \ k[v(48,(6*(i))+ 7)] = ss[1] ^= ss[0]; \ k[v(48,(6*(i))+ 8)] = ss[2] ^= ss[1]; \ k[v(48,(6*(i))+ 9)] = ss[3] ^= ss[2]; \ } #define k6e(k,i) \ { k6ef(k,i); \ k[v(48,(6*(i))+10)] = ss[4] ^= ss[3]; \ k[v(48,(6*(i))+11)] = ss[5] ^= ss[4]; \ } #define kdf6(k,i) \ { ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ff(ss[0]); \ ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ff(ss[1]); \ ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ff(ss[2]); \ ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ff(ss[3]); \ ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ff(ss[4]); \ ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ff(ss[5]); \ } #define kd6(k,i) \ { ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \ ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[v(48,(6*(i))+ 6)] = ss[6] ^= k[v(48,(6*(i)))]; \ ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[6] ^= k[v(48,(6*(i))+ 1)]; \ ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[6] ^= k[v(48,(6*(i))+ 2)]; \ ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[6] ^= k[v(48,(6*(i))+ 3)]; \ ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ss[6] ^= k[v(48,(6*(i))+ 4)]; \ ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ss[6] ^= k[v(48,(6*(i))+ 5)]; \ } #define kdl6(k,i) \ { ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ss[0]; \ ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[1]; \ ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[2]; \ ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[3]; \ } AES_RETURN aes_xi(decrypt_key192)(const unsigned char *key, aes_decrypt_ctx cx[1]) { uint32_t ss[7]; #if defined( d_vars ) d_vars; #endif cx->ks[v(48,(0))] = ss[0] = word_in(key, 0); cx->ks[v(48,(1))] = ss[1] = word_in(key, 1); cx->ks[v(48,(2))] = ss[2] = word_in(key, 2); cx->ks[v(48,(3))] = ss[3] = word_in(key, 3); #ifdef DEC_KS_UNROLL ss[4] = word_in(key, 4); cx->ks[v(48,(4))] = ff(ss[4]); ss[5] = word_in(key, 5); cx->ks[v(48,(5))] = ff(ss[5]); kdf6(cx->ks, 0); kd6(cx->ks, 1); kd6(cx->ks, 2); kd6(cx->ks, 3); kd6(cx->ks, 4); kd6(cx->ks, 5); kd6(cx->ks, 6); kdl6(cx->ks, 7); #else cx->ks[v(48,(4))] = ss[4] = word_in(key, 4); cx->ks[v(48,(5))] = ss[5] = word_in(key, 5); { uint32_t i; for(i = 0; i < 7; ++i) k6e(cx->ks, i); k6ef(cx->ks, 7); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 12 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #endif cx->inf.l = 0; cx->inf.b[0] = 12 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif return EXIT_SUCCESS; } #endif #if defined(AES_256) || defined( AES_VAR ) #define k8ef(k,i) \ { k[v(56,(8*(i))+ 8)] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \ k[v(56,(8*(i))+ 9)] = ss[1] ^= ss[0]; \ k[v(56,(8*(i))+10)] = ss[2] ^= ss[1]; \ k[v(56,(8*(i))+11)] = ss[3] ^= ss[2]; \ } #define k8e(k,i) \ { k8ef(k,i); \ k[v(56,(8*(i))+12)] = ss[4] ^= ls_box(ss[3],0); \ k[v(56,(8*(i))+13)] = ss[5] ^= ss[4]; \ k[v(56,(8*(i))+14)] = ss[6] ^= ss[5]; \ k[v(56,(8*(i))+15)] = ss[7] ^= ss[6]; \ } #define kdf8(k,i) \ { ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ff(ss[0]); \ ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ff(ss[1]); \ ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ff(ss[2]); \ ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ff(ss[3]); \ ss[4] ^= ls_box(ss[3],0); k[v(56,(8*(i))+12)] = ff(ss[4]); \ ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ff(ss[5]); \ ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ff(ss[6]); \ ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ff(ss[7]); \ } #define kd8(k,i) \ { ss[8] = ls_box(ss[7],3) ^ t_use(r,c)[i]; \ ss[0] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+ 8)] = ss[8] ^= k[v(56,(8*(i)))]; \ ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[8] ^= k[v(56,(8*(i))+ 1)]; \ ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[8] ^= k[v(56,(8*(i))+ 2)]; \ ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[8] ^= k[v(56,(8*(i))+ 3)]; \ ss[8] = ls_box(ss[3],0); \ ss[4] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+12)] = ss[8] ^= k[v(56,(8*(i))+ 4)]; \ ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ss[8] ^= k[v(56,(8*(i))+ 5)]; \ ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ss[8] ^= k[v(56,(8*(i))+ 6)]; \ ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ss[8] ^= k[v(56,(8*(i))+ 7)]; \ } #define kdl8(k,i) \ { ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ss[0]; \ ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[1]; \ ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[2]; \ ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[3]; \ } AES_RETURN aes_xi(decrypt_key256)(const unsigned char *key, aes_decrypt_ctx cx[1]) { uint32_t ss[9]; #if defined( d_vars ) d_vars; #endif cx->ks[v(56,(0))] = ss[0] = word_in(key, 0); cx->ks[v(56,(1))] = ss[1] = word_in(key, 1); cx->ks[v(56,(2))] = ss[2] = word_in(key, 2); cx->ks[v(56,(3))] = ss[3] = word_in(key, 3); #ifdef DEC_KS_UNROLL ss[4] = word_in(key, 4); cx->ks[v(56,(4))] = ff(ss[4]); ss[5] = word_in(key, 5); cx->ks[v(56,(5))] = ff(ss[5]); ss[6] = word_in(key, 6); cx->ks[v(56,(6))] = ff(ss[6]); ss[7] = word_in(key, 7); cx->ks[v(56,(7))] = ff(ss[7]); kdf8(cx->ks, 0); kd8(cx->ks, 1); kd8(cx->ks, 2); kd8(cx->ks, 3); kd8(cx->ks, 4); kd8(cx->ks, 5); kdl8(cx->ks, 6); #else cx->ks[v(56,(4))] = ss[4] = word_in(key, 4); cx->ks[v(56,(5))] = ss[5] = word_in(key, 5); cx->ks[v(56,(6))] = ss[6] = word_in(key, 6); cx->ks[v(56,(7))] = ss[7] = word_in(key, 7); { uint32_t i; for(i = 0; i < 6; ++i) k8e(cx->ks, i); k8ef(cx->ks, 6); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 14 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #endif cx->inf.l = 0; cx->inf.b[0] = 14 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif return EXIT_SUCCESS; } #endif #endif #if defined( AES_VAR ) AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1]) { switch(key_len) { case 16: case 128: return aes_encrypt_key128(key, cx); case 24: case 192: return aes_encrypt_key192(key, cx); case 32: case 256: return aes_encrypt_key256(key, cx); default: return EXIT_FAILURE; } } AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1]) { switch(key_len) { case 16: case 128: return aes_decrypt_key128(key, cx); case 24: case 192: return aes_decrypt_key192(key, cx); case 32: case 256: return aes_decrypt_key256(key, cx); default: return EXIT_FAILURE; } } #endif #if defined(__cplusplus) } #endif