/* mz_crypt_openssl.c -- Crypto/hash functions for OpenSSL Version 2.9.0, September 18, 2019 part of the MiniZip project Copyright (C) 2010-2019 Nathan Moinvaziri https://github.com/nmoinvaz/minizip This program is distributed under the terms of the same license as zlib. See the accompanying LICENSE file for the full text of the license. */ #include "mz.h" #include #include #include #include #include #include #include #include #include /***************************************************************************/ static void mz_crypt_init(void) { static int32_t openssl_initialized = 0; if (openssl_initialized == 0) { OpenSSL_add_all_algorithms(); ERR_load_BIO_strings(); ERR_load_crypto_strings(); ENGINE_load_builtin_engines(); ENGINE_register_all_complete(); openssl_initialized = 1; } } int32_t mz_crypt_rand(uint8_t *buf, int32_t size) { int32_t result = 0; result = RAND_bytes(buf, size); if (!result) return MZ_CRYPT_ERROR; return size; } /***************************************************************************/ typedef struct mz_crypt_sha_s { SHA256_CTX ctx256; SHA_CTX ctx1; int32_t initialized; int32_t error; uint16_t algorithm; } mz_crypt_sha; /***************************************************************************/ void mz_crypt_sha_reset(void *handle) { mz_crypt_sha *sha = (mz_crypt_sha *)handle; sha->error = 0; sha->initialized = 0; mz_crypt_init(); } int32_t mz_crypt_sha_begin(void *handle) { mz_crypt_sha *sha = (mz_crypt_sha *)handle; int32_t result = 0; if (sha == NULL) return MZ_PARAM_ERROR; mz_crypt_sha_reset(handle); if (sha->algorithm == MZ_HASH_SHA1) result = SHA1_Init(&sha->ctx1); else result = SHA256_Init(&sha->ctx256); if (!result) { sha->error = ERR_get_error(); return MZ_HASH_ERROR; } sha->initialized = 1; return MZ_OK; } int32_t mz_crypt_sha_update(void *handle, const void *buf, int32_t size) { mz_crypt_sha *sha = (mz_crypt_sha *)handle; int32_t result = 0; if (sha == NULL || buf == NULL || !sha->initialized) return MZ_PARAM_ERROR; if (sha->algorithm == MZ_HASH_SHA1) result = SHA1_Update(&sha->ctx1, buf, size); else result = SHA256_Update(&sha->ctx256, buf, size); if (!result) { sha->error = ERR_get_error(); return MZ_HASH_ERROR; } return size; } int32_t mz_crypt_sha_end(void *handle, uint8_t *digest, int32_t digest_size) { mz_crypt_sha *sha = (mz_crypt_sha *)handle; int32_t result = 0; if (sha == NULL || digest == NULL || !sha->initialized) return MZ_PARAM_ERROR; if (sha->algorithm == MZ_HASH_SHA1) { if (digest_size < MZ_HASH_SHA1_SIZE) return MZ_BUF_ERROR; result = SHA1_Final(digest, &sha->ctx1); } else { if (digest_size < MZ_HASH_SHA256_SIZE) return MZ_BUF_ERROR; result = SHA256_Final(digest, &sha->ctx256); } if (!result) { sha->error = ERR_get_error(); return MZ_HASH_ERROR; } return MZ_OK; } void mz_crypt_sha_set_algorithm(void *handle, uint16_t algorithm) { mz_crypt_sha *sha = (mz_crypt_sha *)handle; sha->algorithm = algorithm; } void *mz_crypt_sha_create(void **handle) { mz_crypt_sha *sha = NULL; sha = (mz_crypt_sha *)MZ_ALLOC(sizeof(mz_crypt_sha)); if (sha != NULL) { memset(sha, 0, sizeof(mz_crypt_sha)); sha->algorithm = MZ_HASH_SHA256; } if (handle != NULL) *handle = sha; return sha; } void mz_crypt_sha_delete(void **handle) { mz_crypt_sha *sha = NULL; if (handle == NULL) return; sha = (mz_crypt_sha *)*handle; if (sha != NULL) { mz_crypt_sha_reset(*handle); MZ_FREE(sha); } *handle = NULL; } /***************************************************************************/ typedef struct mz_crypt_aes_s { AES_KEY key; int32_t mode; int32_t error; uint8_t *key_copy; int32_t key_length; } mz_crypt_aes; /***************************************************************************/ void mz_crypt_aes_reset(void *handle) { MZ_UNUSED(handle); mz_crypt_init(); } int32_t mz_crypt_aes_encrypt(void *handle, uint8_t *buf, int32_t size) { mz_crypt_aes *aes = (mz_crypt_aes *)handle; if (aes == NULL || buf == NULL) return MZ_PARAM_ERROR; if (size != MZ_AES_BLOCK_SIZE) return MZ_PARAM_ERROR; AES_encrypt(buf, buf, &aes->key); /* Equivalent to AES_ecb_encrypt with AES_ENCRYPT */ return size; } int32_t mz_crypt_aes_decrypt(void *handle, uint8_t *buf, int32_t size) { mz_crypt_aes *aes = (mz_crypt_aes *)handle; if (aes == NULL || buf == NULL) return MZ_PARAM_ERROR; if (size != MZ_AES_BLOCK_SIZE) return MZ_PARAM_ERROR; AES_decrypt(buf, buf, &aes->key); /* Equivalent to AES_ecb_encrypt with AES_DECRYPT */ return size; } int32_t mz_crypt_aes_set_encrypt_key(void *handle, const void *key, int32_t key_length) { mz_crypt_aes *aes = (mz_crypt_aes *)handle; int32_t result = 0; int32_t key_bits = 0; if (aes == NULL || key == NULL) return MZ_PARAM_ERROR; mz_crypt_aes_reset(handle); key_bits = key_length * 8; result = AES_set_encrypt_key(key, key_bits, &aes->key); if (result) { aes->error = ERR_get_error(); return MZ_HASH_ERROR; } return MZ_OK; } int32_t mz_crypt_aes_set_decrypt_key(void *handle, const void *key, int32_t key_length) { mz_crypt_aes *aes = (mz_crypt_aes *)handle; int32_t result = 0; int32_t key_bits = 0; if (aes == NULL || key == NULL) return MZ_PARAM_ERROR; mz_crypt_aes_reset(handle); key_bits = key_length * 8; result = AES_set_decrypt_key(key, key_bits, &aes->key); if (result) { aes->error = ERR_get_error(); return MZ_HASH_ERROR; } return MZ_OK; } void mz_crypt_aes_set_mode(void *handle, int32_t mode) { mz_crypt_aes *aes = (mz_crypt_aes *)handle; aes->mode = mode; } void *mz_crypt_aes_create(void **handle) { mz_crypt_aes *aes = NULL; aes = (mz_crypt_aes *)MZ_ALLOC(sizeof(mz_crypt_aes)); if (aes != NULL) memset(aes, 0, sizeof(mz_crypt_aes)); if (handle != NULL) *handle = aes; return aes; } void mz_crypt_aes_delete(void **handle) { mz_crypt_aes *aes = NULL; if (handle == NULL) return; aes = (mz_crypt_aes *)*handle; if (aes != NULL) MZ_FREE(aes); *handle = NULL; } /***************************************************************************/ typedef struct mz_crypt_hmac_s { HMAC_CTX *ctx; int32_t initialized; int32_t error; uint16_t algorithm; } mz_crypt_hmac; /***************************************************************************/ #if (OPENSSL_VERSION_NUMBER < 0x10100000L) || defined(LIBRESSL_VERSION_NUMBER) static HMAC_CTX *HMAC_CTX_new(void) { HMAC_CTX *ctx = OPENSSL_malloc(sizeof(HMAC_CTX)); if (ctx != NULL) HMAC_CTX_init(ctx); return ctx; } static void HMAC_CTX_free(HMAC_CTX *ctx) { if (ctx != NULL) { HMAC_CTX_cleanup(ctx); OPENSSL_free(ctx); } } #endif /***************************************************************************/ void mz_crypt_hmac_reset(void *handle) { mz_crypt_hmac *hmac = (mz_crypt_hmac *)handle; HMAC_CTX_free(hmac->ctx); hmac->ctx = NULL; hmac->error = 0; mz_crypt_init(); } int32_t mz_crypt_hmac_init(void *handle, const void *key, int32_t key_length) { mz_crypt_hmac *hmac = (mz_crypt_hmac *)handle; int32_t result = 0; const EVP_MD *evp_md = NULL; if (hmac == NULL || key == NULL) return MZ_PARAM_ERROR; mz_crypt_hmac_reset(handle); hmac->ctx = HMAC_CTX_new(); if (hmac->algorithm == MZ_HASH_SHA1) evp_md = EVP_sha1(); else evp_md = EVP_sha256(); result = HMAC_Init_ex(hmac->ctx, key, key_length, evp_md, NULL); if (!result) { hmac->error = ERR_get_error(); return MZ_HASH_ERROR; } return MZ_OK; } int32_t mz_crypt_hmac_update(void *handle, const void *buf, int32_t size) { mz_crypt_hmac *hmac = (mz_crypt_hmac *)handle; int32_t result = 0; if (hmac == NULL || buf == NULL) return MZ_PARAM_ERROR; result = HMAC_Update(hmac->ctx, buf, size); if (!result) { hmac->error = ERR_get_error(); return MZ_HASH_ERROR; } return MZ_OK; } int32_t mz_crypt_hmac_end(void *handle, uint8_t *digest, int32_t digest_size) { mz_crypt_hmac *hmac = (mz_crypt_hmac *)handle; int32_t result = 0; if (hmac == NULL || digest == NULL) return MZ_PARAM_ERROR; if (hmac->algorithm == MZ_HASH_SHA1) { if (digest_size < MZ_HASH_SHA1_SIZE) return MZ_BUF_ERROR; result = HMAC_Final(hmac->ctx, digest, (uint32_t *)&digest_size); } else { if (digest_size < MZ_HASH_SHA256_SIZE) return MZ_BUF_ERROR; result = HMAC_Final(hmac->ctx, digest, (uint32_t *)&digest_size); } if (!result) { hmac->error = ERR_get_error(); return MZ_HASH_ERROR; } return MZ_OK; } void mz_crypt_hmac_set_algorithm(void *handle, uint16_t algorithm) { mz_crypt_hmac *hmac = (mz_crypt_hmac *)handle; hmac->algorithm = algorithm; } int32_t mz_crypt_hmac_copy(void *src_handle, void *target_handle) { mz_crypt_hmac *source = (mz_crypt_hmac *)src_handle; mz_crypt_hmac *target = (mz_crypt_hmac *)target_handle; int32_t result = 0; if (source == NULL || target == NULL) return MZ_PARAM_ERROR; mz_crypt_hmac_reset(target_handle); if (target->ctx == NULL) target->ctx = HMAC_CTX_new(); result = HMAC_CTX_copy(target->ctx, source->ctx); if (!result) { target->error = ERR_get_error(); return MZ_HASH_ERROR; } return MZ_OK; } void *mz_crypt_hmac_create(void **handle) { mz_crypt_hmac *hmac = NULL; hmac = (mz_crypt_hmac *)MZ_ALLOC(sizeof(mz_crypt_hmac)); if (hmac != NULL) { memset(hmac, 0, sizeof(mz_crypt_hmac)); hmac->algorithm = MZ_HASH_SHA256; } if (handle != NULL) *handle = hmac; return hmac; } void mz_crypt_hmac_delete(void **handle) { mz_crypt_hmac *hmac = NULL; if (handle == NULL) return; hmac = (mz_crypt_hmac *)*handle; if (hmac != NULL) { mz_crypt_hmac_reset(*handle); MZ_FREE(hmac); } *handle = NULL; } /***************************************************************************/ #if defined(MZ_ZIP_SIGNING) int32_t mz_crypt_sign(uint8_t *message, int32_t message_size, uint8_t *cert_data, int32_t cert_data_size, const char *cert_pwd, uint8_t **signature, int32_t *signature_size) { PKCS12 *p12 = NULL; EVP_PKEY *evp_pkey = NULL; BUF_MEM *buf_mem = NULL; BIO *cert_bio = NULL; BIO *message_bio = NULL; BIO *signature_bio = NULL; CMS_ContentInfo *cms = NULL; CMS_SignerInfo *signer_info = NULL; STACK_OF(X509) *ca_stack = NULL; X509 *cert = NULL; int32_t result = 0; int32_t err = MZ_OK; if (message == NULL || cert_data == NULL || signature == NULL || signature_size == NULL) return MZ_PARAM_ERROR; mz_crypt_init(); *signature = NULL; *signature_size = 0; cert_bio = BIO_new_mem_buf(cert_data, cert_data_size); if (d2i_PKCS12_bio(cert_bio, &p12) == NULL) err = MZ_SIGN_ERROR; if (err == MZ_OK) result = PKCS12_parse(p12, cert_pwd, &evp_pkey, &cert, &ca_stack); if (result) { cms = CMS_sign(NULL, NULL, ca_stack, NULL, CMS_BINARY | CMS_PARTIAL); if (cms) signer_info = CMS_add1_signer(cms, cert, evp_pkey, EVP_sha256(), 0); if (signer_info == NULL) { err = MZ_SIGN_ERROR; } else { message_bio = BIO_new_mem_buf(message, message_size); signature_bio = BIO_new(BIO_s_mem()); result = CMS_final(cms, message_bio, NULL, CMS_BINARY); if (result) result = i2d_CMS_bio(signature_bio, cms); if (result) { BIO_flush(signature_bio); BIO_get_mem_ptr(signature_bio, &buf_mem); *signature_size = buf_mem->length; *signature = MZ_ALLOC(buf_mem->length); memcpy(*signature, buf_mem->data, buf_mem->length); } #if 0 BIO *yy = BIO_new_file("xyz", "wb"); BIO_write(yy, *signature, *signature_size); BIO_flush(yy); BIO_free(yy); #endif } } if (!result) err = MZ_SIGN_ERROR; if (cms) CMS_ContentInfo_free(cms); if (signature_bio) BIO_free(signature_bio); if (cert_bio) BIO_free(cert_bio); if (message_bio) BIO_free(message_bio); if (p12) PKCS12_free(p12); if (err != MZ_OK && *signature != NULL) { MZ_FREE(*signature); *signature = NULL; *signature_size = 0; } return err; } int32_t mz_crypt_sign_verify(uint8_t *message, int32_t message_size, uint8_t *signature, int32_t signature_size) { CMS_ContentInfo *cms = NULL; STACK_OF(X509) *signers = NULL; STACK_OF(X509) *intercerts = NULL; X509_STORE *cert_store = NULL; X509_LOOKUP *lookup = NULL; X509_STORE_CTX *store_ctx = NULL; BIO *message_bio = NULL; BIO *signature_bio = NULL; BUF_MEM *buf_mem = NULL; int32_t signer_count = 0; int32_t result = 0; int32_t i = 0; int32_t err = MZ_SIGN_ERROR; if (message == NULL || message_size == 0 || signature == NULL || signature_size == 0) return MZ_PARAM_ERROR; mz_crypt_init(); cert_store = X509_STORE_new(); X509_STORE_load_locations(cert_store, "cacert.pem", NULL); X509_STORE_set_default_paths(cert_store); #if 0 BIO *yy = BIO_new_file("xyz", "wb"); BIO_write(yy, signature, signature_size); BIO_flush(yy); BIO_free(yy); #endif lookup = X509_STORE_add_lookup(cert_store, X509_LOOKUP_file()); if (lookup != NULL) X509_LOOKUP_load_file(lookup, "cacert.pem", X509_FILETYPE_PEM); lookup = X509_STORE_add_lookup(cert_store, X509_LOOKUP_hash_dir()); if (lookup != NULL) X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); signature_bio = BIO_new_mem_buf(signature, signature_size); message_bio = BIO_new(BIO_s_mem()); cms = d2i_CMS_bio(signature_bio, NULL); if (cms) { result = CMS_verify(cms, NULL, cert_store, NULL, message_bio, CMS_NO_SIGNER_CERT_VERIFY | CMS_BINARY); if (result) signers = CMS_get0_signers(cms); if (signers) intercerts = CMS_get1_certs(cms); if (intercerts) { /* Verify signer certificates */ signer_count = sk_X509_num(signers); if (signer_count > 0) err = MZ_OK; for (i = 0; i < signer_count; i++) { store_ctx = X509_STORE_CTX_new(); X509_STORE_CTX_init(store_ctx, cert_store, sk_X509_value(signers, i), intercerts); result = X509_verify_cert(store_ctx); if (store_ctx) X509_STORE_CTX_free(store_ctx); if (!result) { err = MZ_SIGN_ERROR; break; } } } BIO_get_mem_ptr(message_bio, &buf_mem); if (err == MZ_OK) { /* Verify the message */ if (((int32_t)buf_mem->length != message_size) || (memcmp(buf_mem->data, message, message_size) != 0)) err = MZ_SIGN_ERROR; } } #if 0 if (!result) printf(ERR_error_string(ERR_get_error(), NULL)); #endif if (cms) CMS_ContentInfo_free(cms); if (message_bio) BIO_free(message_bio); if (signature_bio) BIO_free(signature_bio); if (cert_store) X509_STORE_free(cert_store); return err; } #endif