Spacing a Line of Music

John S. Gourlay

OSU-CISRC-10/87- TR35

SPACING A LINE OF MUSIC

John 8. Gourlay
Department of Computer and Information Science
The Ohio State University

October 8, 1987

SPACING A LINE OF MUSIC

John 8. Gourlay

Abstract—This paper describes a very successful algorithim for choosing the spacing
of notes in printed music given their durations and printed sizes. The algorithm
is based on the two observations that the ideal spacing of notes is a logarithmic
function of their durations, and that in the presence of several voices, the note
with the shortest duration defines the space used for all simultaneous notes. The
algorithm improves on previous ones in handling triplets and other complex rhythms
simply and without special cases. It also allows for stretching and shrinking of lines
of music for optimal line breaking and accomodating wide notes, maintaining the
logarithmic spacing at all times, The results of the algorithm have been compared
with good manual spacing of music, and the two are indistinguishable in the vast
majority of cases.

SPACING A LINE OF MUSIC*

John S. Gourlay

Abstract—This paper describes a very successful algorithm for choosing the spacing
of notes in printed music given their durations and printed sizes. The algorithm
is based on the two observations that the ideal spacing of notes is a logarithmic
function of their durations, and that in the presence of several voices, the note
with the shortest duration defines the space used for all simultaneous notes. The
algorithm improves on previous ones in handling triplets and other complex rhythms
simply and without special cases. It also allows for stretching and shrinking of lines
of music for optimal line breaking and accomodating wide notes, maintaining the
logarithmic spacing at all times. The results of the algorithm have been compared
with good manual spacing of musie, and the two are indistinguishable in the vast
majority of cases.

Introduction

The conventions used for spacing notes, chords, and other symbols in printed
music are very consistent, and they are also well understood in the sense that
trained musicians can immediately recognize poor spacing. There is less agreement,
however, on the best algorithm to use to produce good spacing, and documented
attempts at this are incomplete and fraught with special cases. This paper pro-
poses a simple rule that handles the vast majority of music spacing problems, or
punctuation as musicians call it, consistently and correctly.

The goal of all varieties of automated document formatting is to relieve authors
or editors of the burden of typographical detail, allowing them to concentrate on
the content of the document. The MusiCopy project at the Olio State University
[5] is no exception, its goal being the production of publication-quality printed
music from input consisting primarily of musical information, such as the pitches
and duzations of notes. Unlike text formatting, the spacing of symbols in music
depends little on the physical sizes of the symbols, but instead reflects the durations
and overlaps of the sounds it represents. In making spacing decisions, therefore,
durations are the primary data with which we must work., ' '

Musicians, however, almost never think about music as an unstructured collee-
tion of sounds, preferring to organize the sounds into voices, (often corresponding
to instruments,) which are sequences of sounds and silences, that do not overlap
ench other. Several voices performed in parallel then comprise a piece. For the
purposes of this paper all elements of a voice will be called notes, regardless of the
[act that they might, in fact, be chords or even rests. We assume that descriplions

5

* This work was partially supported by the National Science Foundation under
grant number 1ST-8514308 and The Ohio State University. This paper is in [linal
form and no version of it will be submitted for publication elsewhere.

I

i

of several parallel voices have already been preprocessed and collated, by software
such as is described by Parrish and Gourlay {4], into a sequence of simultaneiiies,
or sims for short, that record successive events in the piece of music. Each sim
contains the time uniil the next sim, as well as information from each voice about
notes that begin at that moment.

For the purpose of this paper, a sim contains four pieces of information for
each voice: (1) a flag indicating whether or not there is a note beginning at this
time in this voice, (2) the duration of the note if there is one, (3) the left width of
the symbol, and (4) the right width of the symbol. The left and right widths can
be understood best by looking at Figure 1, in which three notes of various sorts are
illustrated. The space between notes for musical purposes is not measured as in
text from the right edge of one note to the left edge of the next, but instead from
the beatline of one note to the beatline of the next. The beatlines of notes, labelled
B; in the figure, generally fall at the left edge of the noteheads. Note that all three
of the printed notes protrude to the right of their beatlines, to R;, and two of the
notes protrude to the left of their beatlines, to L;. These protrusions are the notes’
left and right widths, respectively. Some amount of stretchability and shrinkability
are present in each space for justifying lines, but under no condition is the right
width of one note allowed to overlap the left width of the following note.

R I TP - T
NS VA O 11 S S

fv o0
T-1-1: Rllf-fz sz-sﬂs

{

By B B
Figure 1. Beatlines and left and right widths of three notes.

The durations of notes are conventionally denominated in fractions of a “whole
note, and we retain that convention here, using } as the duration of a half note,
i as the duration of a quarter note, etc. The same unit of measure is used for the
tlmcs between sitns. The left and right widths of notes, for scale-independence, are
given in units equal to the width of a notehead, or nofehead widths.

Just as we are assuming that preprocessing has occurred to create input of pre-
cisely the correct form, we also limit the scope of this paper by omitting discussion
of line breakiug, an interesting and difficult problem in its own right. The spacing
algorithm discussed here produces information appropriate for the line breaking al-
gorithm described by Hegazy and Gourlay [3]. Specifically, for each sim it produces
an ideal width, a streichability, a shrinkabilily, and a blocking width. The ideal width
is the proper distance from this sim’s beatline to the next based on durations alone.
The stretchability and shrinkability state the amount by which this space should
be allowed to stretch or shrink in proportion to other sim spaces. These are used
in justifying a line of music after line breaking, or in making room for particularly
large symbeols. Finally, the blocking width is the minimum allowable distance from
this beatline to the next that will avoid the physical overlap of symbols.

Finding Ideal Widths in an Isolated Voice

The stmplest case to consider is that of spacing a single voice. Input to the
algorithm, under these conditions, simplifies to nothing more than a series of dura-

2

tions, one for each note in the voice. It is easy to see in printed music that longer
notes occupy more space than shorter notes, and it is tempting to guess that notes
receive space in direct proportion to their durations. This is not the case, however,
and longer notes occupy proportionally less space than one would first expect. Fig-
ure 2 illustrates this, showing typical ideal widths used in printed music for notes
of several durations. Tables similar to this appear in books on music notation,
(e g., Ross [6]), and also in papers on automated music formatting (Gomberg [2].)
Gomberg implements his spacing by table look up, but this is not entirely satisfac-
tory, because it provides no guidance in interpolating the space for durations not
in the table, such as dotted notes or triplets, nor does it help in understanding how
to stretch or shrink spaces when justifying lines.

i f I e ——y
= 1 1 I —

I 5 | 4§ 4 [3]3][2]2]

Figure 2. Typical spacings of various notes {in notehead widths.)

It is natural to look for a continuous function approximating these ideal spaces.
Byrd [1], Tatum [7], and Vendome [8] have all independently proposed functions
of the form ab°%:¢, where d is the duration of the note to be spaced, and a and
b are constants chosen differently by the different people. This says that doubling
the duration of a note increases its space by a factor of b, a value typically set near
1.5. Unfortunately, this kind of function will inevitably produce spacings much too
large for very long notes if the constants are set to behave well for short notes.

Actually, there is a simpler function, log, d + 5, that produces exactly the
spacings prescribed by Gomberg and shown in Figure 2. In addition, generalized to
log, d + k, this function also accounts for spacings in the presence of shorter notes,
or stretched or squeezed lines. For example, in the presence of sixteenth notes, or in
a severely stretched line, the spacings of 5, 4, 3, and 2 in Figure 2 wauld change to 6,
5, 4, and 3, respectively, and log, d46 defines these spacings exactly. A remarkable
fact is that all the stretchabilities and shrinkabilities of the sim spaces in the single-
voice case are equal. In the example just given, all the spaces were stretched by one
notehiead width, and in general, stretching and shrinking are accomplished simply
by meodifying k.

All that remains to be specified, then, is the rule for choosing k. This intro-
duces the concept of a neighborhood, a series of notes that should receive consistent
spacing. More will be said about this in the last section, but we have found that a
measure forms an adequate neighborhood nearly all of the time. We also observe
that the shortest notes in a measure, if they are eighth notes or shorter, receive two
notehead widths of space. If the shortest note is longer than an eighth note, it is
spaced as if eighth notes are present in the measure.

The algorithm, then, is, for each measure, find the minimum duration m,
compute k£ = 2 — log, min{m, 3}, and then from the duration d; of each note i in
the measure, compute the note’s ideal width w; = log, d; + k. Settings for stretch
and shrink appropriate for the Hegazy-Gourlay line-breaking algorithm turn out to
be 1 and :,}, respectively, reflecting the fact that it is more acceptable to stretch a
line of music than it is to shrink it.

Spacing Several Simultaneous Voices

The rule that allows us to generalize this algorithm to more than one voice
is simply that the note with the shortest duration defines ihe space used by all
stmultaneous notes. In the first two measures of Figure 3, the lower voice is spaced
exactly as it would be in isolation, while the upper voice, consisting entirely of
longer-duration notes, is distorted to maintain the required vertical alignment of
notes with simultaneous attack times. For example, in the first measure the second
half note begins at the same time as the third quarter note, and so their beatlines
coincide in spite of the fact that the half note is farther right than the isolated
spacing of Figure 2 would sugpgest. In the second measure each of the three “triplet”
half notes in the lower voice have two-thirds the duration of the ordinary half notes
in the upper voice. These notes are spaced appropriately for their durations, and
again, the upper voice is stretched to coincide. The difference in this case is that
the second note in the upper voice begins half way through the duration of the
second note in the lower voice, and so the beatline of the upper note bisects the
space of the lower note.

|
5

| | | |
T — = g :
¥ P P R S R Y- i
SY—F i | a—ry L = 1
DR RN I N e
y—

Figure 3. Spacing of two voices.

The third measure is more complex because initially the upper voice has the
shortest note, but later the lower voice has it. For this reason, neither voice is spaced
exactly like it would be in isolation. The same spacing rule applies, nevertheless.
The first sim is given the three spaces appropriate to the quarter note in the upper
voice. The second sim, which marks the beginning of the dotted half note in the
upper voice (d = §,) occurs before the end of the dotted quarter note in the lower
voice (d = %.) Since the dotted quarter note is shorter, it defines the space for
this sim. A complete dotted quarter note would receive log, g + 5 = 3.6 notehead
widths, but only one-third of the duration of this note remains before the next sim,
the eighth note. Thus, the second sim receives 1.2 notehead widths of space. After
this, the lower voice retains the shortest duration and therefore controls the spacing.
The significant observation here is that sims spanning fractions of notes should he
handled literally as fractional notes, and not as full notes of short duration. This
allows us to handle all three cases in Figure 3 in the same way, instead of treating
them as separate special cases as is done by Gomberg [2] and Byrd [1].

The general procedure, then, is first to find & as before, based on the minimum
duration of all the notes in all the voices in the measure. Then, for each sim ¢, find
d;, the shortest duration among all the notes starting or continuing at the time of
the sim. Also, find f;, the fraction of this shortest note that will elapse before the
next sim. Finally, find the ideal width of the sim w; = fi(log, di + k). We want
the stretch and shrink for each sim to be appropriate for the note controlling its
spacing, and so we set them to f; and f;/2, respectively.

4

Accomodating Large Note Widths

Thus far we have treated notes as if they had no physical widths when printed.
In fact, they sometimes have very substaniial widths that force them farther apart
than ideal, as is illustrated in Figure 4. In addition to the ideal width, we need to
compute a blocking width for each sim that will indicate the closest that it should
be allowed to come to the sim following. In the first measure of the figure, the
sharps take up 2.25 notehead widths, and the second eighth note takes up another
rotehead width. The second sim, therefore, has a blocking width of 3.25, which
requires extra space because it is greater than the ideal width of 2. The general case
is complicated, however, by the fact that blocks can span several sims, as in the
second measure. As before, we have two sharps attached to the third sim, but the
left width belongs to the upper voice rather than the lower one. As before, there
is 3.25 notehead widths of blocking, but the upper voice is absent in the second
sim and the block is now between the first and third sims. Ideal spacing puts these
sims 4 notehead widths apart, and so the block does not require any extra space.

Figure 4. The effect of extra width.

The third measure shows a more extreme case where the width of the block
exceeds even the large ideal space in the upper voice. The grace notes require a left
width of 5 in the second note of the upper voice. Added to the right width of the
first note, the size of the block is 6. This requires extra space, but the block spans
two sims, so the blocking width must somehow be distributed over both sims. If
we think of the grace notes as stretching a small neighborhood, it is clear that we
should maintain the logarithmic spacing rule within the neighborhood. Thus, we
should distribute the excess width among sims in proportion to their stretchability,
in this case giving both the first and second sims blocking widths of 3.

A convenient way to add the computation of blocking widths to the evolving
spacing algorithm is to add a step, prior to the ideal width computation, to look
back at preceding sims and to increase their blocking widths, if necessary, to allow
for the left widths of the current sim. We will usually have to look back only one
or two sims, and never farther than the beginning of the measure, so this approach
is quite tractable. '

For each voice that has a note beginning in the current sim s, we need to do
the following: First, find p, the sim with the last occurrence of a note in this voice,
and find z = rp + {,, the total block in this voice, the sum of the right width of
the previous note and the left width of the current one. Then, make a pass over
the sims from p to s— 1 and find &’ = (z — 337} wy)/ Zf;; fi, the increment to k
that will stretch the spanned sims to a total wicfth of z. Finally, gg back over each
of the spanned sims £, and replace its blocking width b; with &' f; + w;, if the latter
is larger.

(5]

Results and Remaining Problems

The algorithm as described is essentially complete. The implementation con-
tains a number of additional technical details for handling barlines (which act as if
they have small durations, but do not belong to neighborhoods), and for handling
symbols without duration such as tempo marks and dynamics (which participate
in blocking width computation, but not in ideal space computation.) Also, care
must be taken in correctly specifying the input for whole notes and whole rests
{(which can be printed well to the right of their beatlines.) Nevertheless, there are
no important new ideas incorporated in these features.

The algorithm has been. tested on numerous small examples of music and on
several extended pieces with excellent results. In a typical piece with 50 measures,
the automatic spacing and subsequent line breaking {3] was indistinguishable from
the original hand spacing in all but one measure. Both forms of the line containing
this measure are shown in Figure 5, and we can see that the automatic spacing gave
noticeably more space to the longer notes of the penultimate measure. The manual
spacing is a little bit better, and the problem turns out to be a subtle question
of neighborhoods—the copyist wanted all of the eighth notes in the line to receive
consistent spacing, and noticed as well that there were no sixteenth notes in the
measure in question. He then made the judgement thaf the line as a2 whole would
lock better if he violated conventional spacing for the one measure by spacing it as if
the thirty-second notes were sixteenth notes. While with hindsight this particular
pattern of reasoning could conceivably be built into the spacing algorithm, this
general level of human judgement is well beyond the scope of any formatting system,
and we are gratified that it is only at this level that our algorithm deviates from
manual spacing.)

A . — B el T —

L7 | | Pl L' LW LY I 3, 3
A 71 I | Y B RN rd i T I]
i WO N N 0T o)

Pigure 5. Worst-case comparison of a line set manually {above) and automatically (below.}

One way to mitigate this and similar neighborhood problems is to provide a
mechanism by which the user of the music formatting system could explicitly set the
bounds and parameters of neighborhoods. Not only should cne be able to assign a
particular value to k, but one should also have access to the base of the logarithms
used. Using logarithms base 4 would produce almost precisely the effect the copyist
desired in Figure 5.

Another rare problem that is not adequately addressed by this algorithm is
that of “crossed voices,” i. e., two voices on one staff in which notes of the lower
voice are higher on the staff than notes of the upper voice. If the crossed notes

6

are simultaneous, they will be assembled properly by our preprocessor [4] into a
single sim, such as the last sim of the first measure of Figure 5. If the crossed notes
are not quite simultaneous, however, for example if the voices were crossed in the
second or third measures of Figure 4, our spacing algorithm would simply allow the
symbols to overlap. Again, the problem could be mitigated by giving the user the
ability to deliberately misstate left and right widths, forcing things farther apart,
but a challenging future problem would be to generalize this algorithm to space
crossed voices properly on the first try. .

Perhaps the empirical success and relative simplicity of this spacing algorithm
are enough to encourage its acceptance. There is an intriguing possibility, however,
that it reflects more than simple musical convention, and says something about
visual perception. It is well known that intensities of many stimuli are perceived
logarithmically, and that the retina has neurons that measure changes in stimulus as
well as absolute levels. The spacing algorithm described here suggests that printed
music captures an inherent logarithmic encoding of duration, and that musicians
respond not to the absolute spacing of notes, but to the differences in spacing
of successive notes. This conjecture lends some psychological plausibility to the
spacing algorithm, but confirming it would require work well beyond the scopes of
music and computer science.

Bibliography

[1] Byrd, Donald, A., Music Notation by Computer, Indiana University, Dept. of
Computer Science, Ph. D. Thesis, 1984.

[2] Gomberg, David A., “A Computer-Oriented System for Music Printing,” Com-
puters and the Humanities, vol. 11, pp. 63-80, 1977.

[3] Hegazy, Wael A., and Gourlay, John 5., “Optimal Line Breaking in Music,”
Ohio State University, Dept. of Computer and Info. Science, OSU-CISRC-
10/87-TR33, 1987.

[4] Parrish, Allen, and Gourlay, John S., “Computer Formatting of Musical Simul-
taneities,” Ohio State University, Dept. of Computer and Info. Science,
OSU-CISRC-10/87-TR28, 1987.

[5] Parrish, Allen, et al, “MusiCopy: An Automated Music Formatting System,”
Ohio State University, Dept. of Computer and Info. Science, OSU-CISRC-
10/87-TR29, 1987.

[6] Ross, T., The Art of Music Engraving and Processing, Hansen Books, Miami,
1970.

[7] Tatem, J. E., et al, “ENGRAVE—An Expert System that Plans the Spatial
Layout of Music,” unpublished manuscript, 1985.

[8] Vendome, Richard, untitled, unpublished manuseript concerning the Oxford
Music Processor, 1986.

Acknowledgements

I would like to thank Dean K. Roush for his expertise in music notation and
for his permission to use excerpts from his composition “Lacrimosa” in this paper.
I also thank Yiling Tien for her preliminary work on this problem.

