//! Binh and Korn problem solution using SPEA-II. use moga::{ operator::{ParBatch, ParEach}, optimizer::{spea::Spea2, Optimizer}, selection::TournamentSelectorWithoutReplacement, termination::GenerationTerminator, }; use rand::Rng; use rand_distr::{Distribution, Normal}; fn main() { // the 'Solution' type represented by a pair of floating point values struct Solution { x: f32, y: f32, } // the initial population let population: Vec = (0i8..100) .map(|i| Solution { x: i.into(), y: i.into(), }) .collect(); // the archive size of `Spea2` optimizer let archive_size = population.len(); // the second objective function f1(x, y) = 4x^2 + 4y^2 let f1 = |s: &Solution| 4.0 * s.x.powf(2.0) + 4.0 * s.y.powf(2.0); // and the second objective function f2(x, y) = (x - 5)^2 + (y - 5)^2 let f2 = |s: &Solution| (s.x - 5.0).powf(2.0) + (s.y - 5.0).powf(2.0); // an array of closures forms a `Test` let _test = [f1, f2]; // you can also create a `Test` from a closure that returns an array // instead of using array of closures let test = |s: &Solution| { [ 4.0 * s.x.powf(2.0) + 4.0 * s.y.powf(2.0), (s.x - 5.0).powf(2.0) + (s.y - 5.0).powf(2.0), ] }; // a `Terminator` that terminates after 1000 generations let terminator = GenerationTerminator(1000); // a `Selector` that selects 10 unique solutions from 10 binary tournaments let selector = TournamentSelectorWithoutReplacement(10, 2); // simulated binary crossover for two `f32` values... let sbx_f32 = |a: f32, b: f32| -> (f32, f32) { let n = 2.0; let r: f32 = rand::thread_rng().gen_range(0.0..1.0); let beta = if r <= 0.5 { (2.0 * r).powf(1.0 / (n + 1.0)) } else { (1.0 / (2.0 * (1.0 - r))).powf(1.0 / (n + 1.0)) }; let p = 0.5 * ((a + b) - beta * (b - a)); let q = 0.5 * ((a + b) + beta * (b - a)); (p, q) }; // which is applied to both solutions' values by `Recombination` operator let recombination = |a: &Solution, b: &Solution| -> (Solution, Solution) { let (x1, x2) = sbx_f32(a.x, b.x); let (y1, y2) = sbx_f32(a.y, b.y); (Solution { x: x1, y: y1 }, Solution { x: x2, y: y2 }) }; // a `Mutator` based on random values from normal disribution... let normal = Normal::new(0.0, 1.0).unwrap(); // which comes from 'rand_distr' let mutation = |s: &mut Solution| { s.x += normal.sample(&mut rand::thread_rng()); s.y += normal.sample(&mut rand::thread_rng()); }; // a convinient builder with compile time verification from `typed-builder` crate let spea2 = Spea2::builder() .population(population) .archive_size(archive_size) // fitness values will be evaluated concurrently for each solution .tester(test.par_each()) .selector(selector) .recombinator(recombination) // solutions will be split in batches of optimal size, then the mutation // operator will be applied to solutions in each batch concurrently .mutator(mutation.par_batch()) .terminator(terminator) .build(); // consume and run the optimizer, returning the best solutions let solutions = spea2.optimize(); // print values of objective functions for each solution for s in solutions { let [x, y] = test(&s); println!("{x} {y}",); } }