//! //! File : portfolio_1_basic.rs //! //! Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved. //! //! Description : Implements a basic portfolio optimization model. //! //! More details can be found at //! extern crate mosek; extern crate itertools; use mosek::{Task,Objsense,Streamtype,Soltype,Solsta}; use itertools::{iproduct}; /// Solve basic Markowitz portfolio problem: Maximize expected return /// while bounded the estimated risk. /// /// ``` /// Maximize mu'x /// Subject to /// budget : sum(x) = sum(x0)+w /// risk: gamma^2 >= || G'x ||^2 /// x >= 0 /// ``` /// /// # Arguments /// /// - `n` number of assets /// - `gamma` risk bound (bound on the standard deviation) /// - `mu` vector of expected returns /// - `GT` Covariance matrix factor /// - `x0` vector if initial investment /// - `w` initial uninvested wealth #[allow(non_snake_case)] fn portfolio(n : i32, // number of assets gamma : f64, // risk bound: maximum stddev mu : &[f64], // vector of expected returns GT : &[f64], // covariance matrix factor x0 : &[f64], // initial investment w : f64) // initial wealth -> Result<(Vec,f64),String> { let k = (GT.len() / n as usize) as i32; /* Create the optimization task. */ let mut task = match Task::new() { Some(e) => e, None => return Err("Failed to create task".to_string()), }.with_callbacks(); task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?; /* Total budget */ let total_budget = w + x0.iter().sum::(); /* Constraints. */ task.append_cons(1i32)?; /* Variables. */ task.append_vars(n)?; let x : Vec = (0i32..n).collect(); /* Total budget constraint - set bounds l^c = u^c */ task.put_con_bound(0i32, mosek::Boundkey::FX, total_budget, total_budget)?; task.put_con_name(0i32,"budget")?; task.put_obj_sense(Objsense::MAXIMIZE)?; task.put_c_slice(0,n,mu)?; /* x variables. */ for (j,xj) in x.iter().enumerate() { /* Coefficients in the first row of A */ task.put_aij(0, *xj, 1.0)?; /* No short-selling - x^l = 0, x^u = inf */ task.put_var_bound(*xj, mosek::Boundkey::LO, 0.0, 0.0)?; task.put_var_name(*xj, format!("x[{}]",j+1).as_str())?; } // risk bound { let acci = task.get_num_acc()?; let afei = task.get_num_afe()?; task.append_afes(k as i64 + 1)?; let dom = task.append_quadratic_cone_domain(k as i64+1)?; task.append_acc_seq(dom, afei, vec![0.0; k as usize + 1].as_slice())?; task.put_acc_name(acci,"risk")?; task.put_afe_g(afei,gamma)?; for ((i,j),v) in iproduct!(0..n,0..n).zip(GT).filter(|(_,v)| **v != 0.0) { task.put_afe_f_entry(afei + i as i64 + 1, j as i32, *v)?; } } /* Dump the problem to a human readable OPF file. */ // task.write_data("portfolio_1_basic.ptf")?; let _trm = task.optimize()?; // Check if the interior point solution is an optimal point if task.get_sol_sta(Soltype::ITR)? != Solsta::OPTIMAL { // See https://docs.mosek.com/latest/rustapi/accessing-solution.html about handling solution statuses. eprintln!("Solution not optimal!"); std::process::exit(1); } /* Display the solution summary for quick inspection of results. */ task.solution_summary(Streamtype::MSG)?; task.write_data("portfolio_1_basic.ptf")?; /* Read the x variables one by one and compute expected return. */ /* Can also be obtained as value of the objective. */ let mut level = vec![0.0;n as usize]; task.get_xx_slice(Soltype::ITR,0,n,level.as_mut_slice())?; let expret = task.get_primal_obj(Soltype::ITR)?; Ok((level.to_vec(),expret)) } #[allow(non_snake_case)] fn main() -> Result<(),String> { let n = 8i32; let w = 59.0; let mu = &[0.07197349, 0.15518171, 0.17535435, 0.0898094 , 0.42895777, 0.39291844, 0.32170722, 0.18378628]; let x0 = &[8.0, 5.0, 3.0, 5.0, 2.0, 9.0, 3.0, 6.0]; let gamma = 36.0; let GT = &[ 0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638, 0. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506, 0. , 0. , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914, 0. , 0. , 0. , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742, 0. , 0. , 0. , 0. , 0.36096, 0.12574, 0.10157, 0.0571 , 0. , 0. , 0. , 0. , 0. , 0.21552, 0.05663, 0.06187, 0. , 0. , 0. , 0. , 0. , 0. , 0.22514, 0.03327, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.2202 ]; let (level,expret) = portfolio(n,gamma,mu,GT,x0,w)?; println!("Solution x = {:?}",level); println!("Expected return {:.4e} for gamma = {:.4e}", expret, gamma); Ok(()) } #[cfg(test)] mod tests { #[test] fn test() { super::main().unwrap(); } }