/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include "../internal.h" ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x) { return ASN1_STRING_dup(x); } int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y) { // Compare signs. int neg = x->type & V_ASN1_NEG; if (neg != (y->type & V_ASN1_NEG)) { return neg ? -1 : 1; } int ret = ASN1_STRING_cmp(x, y); if (neg) { // This could be |-ret|, but |ASN1_STRING_cmp| is not forbidden from // returning |INT_MIN|. if (ret < 0) { return 1; } else if (ret > 0) { return -1; } else { return 0; } } return ret; } // negate_twos_complement negates |len| bytes from |buf| in-place, interpreted // as a signed, big-endian two's complement value. static void negate_twos_complement(uint8_t *buf, size_t len) { uint8_t borrow = 0; for (size_t i = len - 1; i < len; i--) { uint8_t t = buf[i]; buf[i] = 0u - borrow - t; borrow |= t != 0; } } static int is_all_zeros(const uint8_t *in, size_t len) { for (size_t i = 0; i < len; i++) { if (in[i] != 0) { return 0; } } return 1; } int i2c_ASN1_INTEGER(const ASN1_INTEGER *in, unsigned char **outp) { if (in == NULL) { return 0; } // |ASN1_INTEGER|s should be represented minimally, but it is possible to // construct invalid ones. Skip leading zeros so this does not produce an // invalid encoding or break invariants. CBS cbs; CBS_init(&cbs, in->data, in->length); while (CBS_len(&cbs) > 0 && CBS_data(&cbs)[0] == 0) { CBS_skip(&cbs, 1); } int is_negative = (in->type & V_ASN1_NEG) != 0; size_t pad; CBS copy = cbs; uint8_t msb; if (!CBS_get_u8(©, &msb)) { // Zero is represented as a single byte. is_negative = 0; pad = 1; } else if (is_negative) { // 0x80...01 through 0xff...ff have a two's complement of 0x7f...ff // through 0x00...01 and need an extra byte to be negative. // 0x01...00 through 0x80...00 have a two's complement of 0xfe...ff // through 0x80...00 and can be negated as-is. pad = msb > 0x80 || (msb == 0x80 && !is_all_zeros(CBS_data(©), CBS_len(©))); } else { // If the high bit is set, the signed representation needs an extra // byte to be positive. pad = (msb & 0x80) != 0; } if (CBS_len(&cbs) > INT_MAX - pad) { OPENSSL_PUT_ERROR(ASN1, ERR_R_OVERFLOW); return 0; } int len = (int)(pad + CBS_len(&cbs)); assert(len > 0); if (outp == NULL) { return len; } if (pad) { (*outp)[0] = 0; } OPENSSL_memcpy(*outp + pad, CBS_data(&cbs), CBS_len(&cbs)); if (is_negative) { negate_twos_complement(*outp, len); assert((*outp)[0] >= 0x80); } else { assert((*outp)[0] < 0x80); } *outp += len; return len; } ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **out, const unsigned char **inp, long len) { // This function can handle lengths up to INT_MAX - 1, but the rest of the // legacy ASN.1 code mixes integer types, so avoid exposing it to // ASN1_INTEGERS with larger lengths. if (len < 0 || len > INT_MAX / 2) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_TOO_LONG); return NULL; } CBS cbs; CBS_init(&cbs, *inp, (size_t)len); int is_negative; if (!CBS_is_valid_asn1_integer(&cbs, &is_negative)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_INTEGER); return NULL; } ASN1_INTEGER *ret = NULL; if (out == NULL || *out == NULL) { ret = ASN1_INTEGER_new(); if (ret == NULL) { return NULL; } } else { ret = *out; } // Convert to |ASN1_INTEGER|'s sign-and-magnitude representation. First, // determine the size needed for a minimal result. if (is_negative) { // 0xff00...01 through 0xff7f..ff have a two's complement of 0x00ff...ff // through 0x000100...001 and need one leading zero removed. 0x8000...00 // through 0xff00...00 have a two's complement of 0x8000...00 through // 0x0100...00 and will be minimally-encoded as-is. if (CBS_len(&cbs) > 0 && CBS_data(&cbs)[0] == 0xff && !is_all_zeros(CBS_data(&cbs) + 1, CBS_len(&cbs) - 1)) { CBS_skip(&cbs, 1); } } else { // Remove the leading zero byte, if any. if (CBS_len(&cbs) > 0 && CBS_data(&cbs)[0] == 0x00) { CBS_skip(&cbs, 1); } } if (!ASN1_STRING_set(ret, CBS_data(&cbs), CBS_len(&cbs))) { goto err; } if (is_negative) { ret->type = V_ASN1_NEG_INTEGER; negate_twos_complement(ret->data, ret->length); } else { ret->type = V_ASN1_INTEGER; } // The value should be minimally-encoded. assert(ret->length == 0 || ret->data[0] != 0); // Zero is not negative. assert(!is_negative || ret->length > 0); *inp += len; if (out != NULL) { *out = ret; } return ret; err: if (ret != NULL && (out == NULL || *out != ret)) { ASN1_INTEGER_free(ret); } return NULL; } int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t v) { if (v >= 0) { return ASN1_INTEGER_set_uint64(a, (uint64_t)v); } if (!ASN1_INTEGER_set_uint64(a, 0 - (uint64_t)v)) { return 0; } a->type = V_ASN1_NEG_INTEGER; return 1; } int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t v) { if (v >= 0) { return ASN1_ENUMERATED_set_uint64(a, (uint64_t)v); } if (!ASN1_ENUMERATED_set_uint64(a, 0 - (uint64_t)v)) { return 0; } a->type = V_ASN1_NEG_ENUMERATED; return 1; } int ASN1_INTEGER_set(ASN1_INTEGER *a, long v) { OPENSSL_STATIC_ASSERT(sizeof(long) <= sizeof(int64_t), long_fits_in_int64_t); return ASN1_INTEGER_set_int64(a, v); } int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v) { OPENSSL_STATIC_ASSERT(sizeof(long) <= sizeof(int64_t), long_fits_in_int64_t); return ASN1_ENUMERATED_set_int64(a, v); } static int asn1_string_set_uint64(ASN1_STRING *out, uint64_t v, int type) { uint8_t buf[sizeof(uint64_t)]; CRYPTO_store_u64_be(buf, v); size_t leading_zeros; for (leading_zeros = 0; leading_zeros < sizeof(buf); leading_zeros++) { if (buf[leading_zeros] != 0) { break; } } if (!ASN1_STRING_set(out, buf + leading_zeros, sizeof(buf) - leading_zeros)) { return 0; } out->type = type; return 1; } int ASN1_INTEGER_set_uint64(ASN1_INTEGER *out, uint64_t v) { return asn1_string_set_uint64(out, v, V_ASN1_INTEGER); } int ASN1_ENUMERATED_set_uint64(ASN1_ENUMERATED *out, uint64_t v) { return asn1_string_set_uint64(out, v, V_ASN1_ENUMERATED); } static int asn1_string_get_abs_uint64(uint64_t *out, const ASN1_STRING *a, int type) { if ((a->type & ~V_ASN1_NEG) != type) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_WRONG_INTEGER_TYPE); return 0; } uint8_t buf[sizeof(uint64_t)] = {0}; if (a->length > (int)sizeof(buf)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_INTEGER); return 0; } OPENSSL_memcpy(buf + sizeof(buf) - a->length, a->data, a->length); *out = CRYPTO_load_u64_be(buf); return 1; } static int asn1_string_get_uint64(uint64_t *out, const ASN1_STRING *a, int type) { if (!asn1_string_get_abs_uint64(out, a, type)) { return 0; } if (a->type & V_ASN1_NEG) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_INTEGER); return 0; } return 1; } int ASN1_INTEGER_get_uint64(uint64_t *out, const ASN1_INTEGER *a) { return asn1_string_get_uint64(out, a, V_ASN1_INTEGER); } int ASN1_ENUMERATED_get_uint64(uint64_t *out, const ASN1_ENUMERATED *a) { return asn1_string_get_uint64(out, a, V_ASN1_ENUMERATED); } static int asn1_string_get_int64(int64_t *out, const ASN1_STRING *a, int type) { uint64_t v; if (!asn1_string_get_abs_uint64(&v, a, type)) { return 0; } int64_t i64; int fits_in_i64; // Check |v != 0| to handle manually-constructed negative zeros. if ((a->type & V_ASN1_NEG) && v != 0) { i64 = (int64_t)(0u - v); fits_in_i64 = i64 < 0; } else { i64 = (int64_t)v; fits_in_i64 = i64 >= 0; } if (!fits_in_i64) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_INTEGER); return 0; } *out = i64; return 1; } int ASN1_INTEGER_get_int64(int64_t *out, const ASN1_INTEGER *a) { return asn1_string_get_int64(out, a, V_ASN1_INTEGER); } int ASN1_ENUMERATED_get_int64(int64_t *out, const ASN1_ENUMERATED *a) { return asn1_string_get_int64(out, a, V_ASN1_ENUMERATED); } static long asn1_string_get_long(const ASN1_STRING *a, int type) { if (a == NULL) { return 0; } int64_t v; if (!asn1_string_get_int64(&v, a, type) || // v < LONG_MIN || v > LONG_MAX) { // This function's return value does not distinguish overflow from -1. ERR_clear_error(); return -1; } return (long)v; } long ASN1_INTEGER_get(const ASN1_INTEGER *a) { return asn1_string_get_long(a, V_ASN1_INTEGER); } long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a) { return asn1_string_get_long(a, V_ASN1_ENUMERATED); } static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai, int type) { ASN1_INTEGER *ret; if (ai == NULL) { ret = ASN1_STRING_type_new(type); } else { ret = ai; } if (ret == NULL) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); goto err; } if (BN_is_negative(bn) && !BN_is_zero(bn)) { ret->type = type | V_ASN1_NEG; } else { ret->type = type; } int len = BN_num_bytes(bn); if (!ASN1_STRING_set(ret, NULL, len) || !BN_bn2bin_padded(ret->data, len, bn)) { goto err; } return ret; err: if (ret != ai) { ASN1_STRING_free(ret); } return NULL; } ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai) { return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER); } ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai) { return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED); } static BIGNUM *asn1_string_to_bn(const ASN1_STRING *ai, BIGNUM *bn, int type) { if ((ai->type & ~V_ASN1_NEG) != type) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_WRONG_INTEGER_TYPE); return NULL; } BIGNUM *ret; if ((ret = BN_bin2bn(ai->data, ai->length, bn)) == NULL) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_BN_LIB); } else if (ai->type & V_ASN1_NEG) { BN_set_negative(ret, 1); } return ret; } BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn) { return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER); } BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn) { return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED); }