/* ==================================================================== * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include "../internal.h" struct bio_bio_st { BIO *peer; // NULL if buf == NULL. // If peer != NULL, then peer->ptr is also a bio_bio_st, // and its "peer" member points back to us. // peer != NULL iff init != 0 in the BIO. // This is for what we write (i.e. reading uses peer's struct): int closed; // valid iff peer != NULL size_t len; // valid iff buf != NULL; 0 if peer == NULL size_t offset; // valid iff buf != NULL; 0 if len == 0 size_t size; uint8_t *buf; // "size" elements (if != NULL) size_t request; // valid iff peer != NULL; 0 if len != 0, // otherwise set by peer to number of bytes // it (unsuccessfully) tried to read, // never more than buffer space (size-len) warrants. }; static int bio_new(BIO *bio) { struct bio_bio_st *b = OPENSSL_zalloc(sizeof *b); if (b == NULL) { return 0; } b->size = 17 * 1024; // enough for one TLS record (just a default) bio->ptr = b; return 1; } static void bio_destroy_pair(BIO *bio) { struct bio_bio_st *b = bio->ptr; BIO *peer_bio; struct bio_bio_st *peer_b; if (b == NULL) { return; } peer_bio = b->peer; if (peer_bio == NULL) { return; } peer_b = peer_bio->ptr; assert(peer_b != NULL); assert(peer_b->peer == bio); peer_b->peer = NULL; peer_bio->init = 0; assert(peer_b->buf != NULL); peer_b->len = 0; peer_b->offset = 0; b->peer = NULL; bio->init = 0; assert(b->buf != NULL); b->len = 0; b->offset = 0; } static int bio_free(BIO *bio) { struct bio_bio_st *b = bio->ptr; assert(b != NULL); if (b->peer) { bio_destroy_pair(bio); } OPENSSL_free(b->buf); OPENSSL_free(b); return 1; } static int bio_read(BIO *bio, char *buf, int size_) { size_t size = size_; size_t rest; struct bio_bio_st *b, *peer_b; BIO_clear_retry_flags(bio); if (!bio->init) { return 0; } b = bio->ptr; assert(b != NULL); assert(b->peer != NULL); peer_b = b->peer->ptr; assert(peer_b != NULL); assert(peer_b->buf != NULL); peer_b->request = 0; // will be set in "retry_read" situation if (buf == NULL || size == 0) { return 0; } if (peer_b->len == 0) { if (peer_b->closed) { return 0; // writer has closed, and no data is left } else { BIO_set_retry_read(bio); // buffer is empty if (size <= peer_b->size) { peer_b->request = size; } else { // don't ask for more than the peer can // deliver in one write peer_b->request = peer_b->size; } return -1; } } // we can read if (peer_b->len < size) { size = peer_b->len; } // now read "size" bytes rest = size; assert(rest > 0); // one or two iterations do { size_t chunk; assert(rest <= peer_b->len); if (peer_b->offset + rest <= peer_b->size) { chunk = rest; } else { // wrap around ring buffer chunk = peer_b->size - peer_b->offset; } assert(peer_b->offset + chunk <= peer_b->size); OPENSSL_memcpy(buf, peer_b->buf + peer_b->offset, chunk); peer_b->len -= chunk; if (peer_b->len) { peer_b->offset += chunk; assert(peer_b->offset <= peer_b->size); if (peer_b->offset == peer_b->size) { peer_b->offset = 0; } buf += chunk; } else { // buffer now empty, no need to advance "buf" assert(chunk == rest); peer_b->offset = 0; } rest -= chunk; } while (rest); // |size| is bounded by the buffer size, which fits in |int|. return (int)size; } static int bio_write(BIO *bio, const char *buf, int num_) { size_t num = num_; size_t rest; struct bio_bio_st *b; BIO_clear_retry_flags(bio); if (!bio->init || buf == NULL || num == 0) { return 0; } b = bio->ptr; assert(b != NULL); assert(b->peer != NULL); assert(b->buf != NULL); b->request = 0; if (b->closed) { // we already closed OPENSSL_PUT_ERROR(BIO, BIO_R_BROKEN_PIPE); return -1; } assert(b->len <= b->size); if (b->len == b->size) { BIO_set_retry_write(bio); // buffer is full return -1; } // we can write if (num > b->size - b->len) { num = b->size - b->len; } // now write "num" bytes rest = num; assert(rest > 0); // one or two iterations do { size_t write_offset; size_t chunk; assert(b->len + rest <= b->size); write_offset = b->offset + b->len; if (write_offset >= b->size) { write_offset -= b->size; } // b->buf[write_offset] is the first byte we can write to. if (write_offset + rest <= b->size) { chunk = rest; } else { // wrap around ring buffer chunk = b->size - write_offset; } OPENSSL_memcpy(b->buf + write_offset, buf, chunk); b->len += chunk; assert(b->len <= b->size); rest -= chunk; buf += chunk; } while (rest); // |num| is bounded by the buffer size, which fits in |int|. return (int)num; } static int bio_make_pair(BIO *bio1, BIO *bio2, size_t writebuf1_len, size_t writebuf2_len) { struct bio_bio_st *b1, *b2; assert(bio1 != NULL); assert(bio2 != NULL); b1 = bio1->ptr; b2 = bio2->ptr; if (b1->peer != NULL || b2->peer != NULL) { OPENSSL_PUT_ERROR(BIO, BIO_R_IN_USE); return 0; } if (b1->buf == NULL) { if (writebuf1_len) { b1->size = writebuf1_len; } b1->buf = OPENSSL_malloc(b1->size); if (b1->buf == NULL) { return 0; } b1->len = 0; b1->offset = 0; } if (b2->buf == NULL) { if (writebuf2_len) { b2->size = writebuf2_len; } b2->buf = OPENSSL_malloc(b2->size); if (b2->buf == NULL) { return 0; } b2->len = 0; b2->offset = 0; } b1->peer = bio2; b1->closed = 0; b1->request = 0; b2->peer = bio1; b2->closed = 0; b2->request = 0; bio1->init = 1; bio2->init = 1; return 1; } static long bio_ctrl(BIO *bio, int cmd, long num, void *ptr) { long ret; struct bio_bio_st *b = bio->ptr; assert(b != NULL); switch (cmd) { // specific CTRL codes case BIO_C_GET_WRITE_BUF_SIZE: ret = (long)b->size; break; case BIO_C_GET_WRITE_GUARANTEE: // How many bytes can the caller feed to the next write // without having to keep any? if (b->peer == NULL || b->closed) { ret = 0; } else { ret = (long)b->size - b->len; } break; case BIO_C_GET_READ_REQUEST: // If the peer unsuccessfully tried to read, how many bytes // were requested? (As with BIO_CTRL_PENDING, that number // can usually be treated as boolean.) ret = (long)b->request; break; case BIO_C_RESET_READ_REQUEST: // Reset request. (Can be useful after read attempts // at the other side that are meant to be non-blocking, // e.g. when probing SSL_read to see if any data is // available.) b->request = 0; ret = 1; break; case BIO_C_SHUTDOWN_WR: // similar to shutdown(..., SHUT_WR) b->closed = 1; ret = 1; break; // standard CTRL codes follow case BIO_CTRL_GET_CLOSE: ret = bio->shutdown; break; case BIO_CTRL_SET_CLOSE: bio->shutdown = (int)num; ret = 1; break; case BIO_CTRL_PENDING: if (b->peer != NULL) { struct bio_bio_st *peer_b = b->peer->ptr; ret = (long)peer_b->len; } else { ret = 0; } break; case BIO_CTRL_WPENDING: ret = 0; if (b->buf != NULL) { ret = (long)b->len; } break; case BIO_CTRL_FLUSH: ret = 1; break; case BIO_CTRL_EOF: { BIO *other_bio = ptr; if (other_bio) { struct bio_bio_st *other_b = other_bio->ptr; assert(other_b != NULL); ret = other_b->len == 0 && other_b->closed; } else { ret = 1; } } break; default: ret = 0; } return ret; } static const BIO_METHOD methods_biop = { BIO_TYPE_BIO, "BIO pair", bio_write, bio_read, NULL /* puts */, NULL /* gets */, bio_ctrl, bio_new, bio_free, NULL /* callback_ctrl */, }; static const BIO_METHOD *bio_s_bio(void) { return &methods_biop; } int BIO_new_bio_pair(BIO** bio1_p, size_t writebuf1_len, BIO** bio2_p, size_t writebuf2_len) { BIO *bio1 = BIO_new(bio_s_bio()); BIO *bio2 = BIO_new(bio_s_bio()); if (bio1 == NULL || bio2 == NULL || !bio_make_pair(bio1, bio2, writebuf1_len, writebuf2_len)) { BIO_free(bio1); BIO_free(bio2); *bio1_p = NULL; *bio2_p = NULL; return 0; } *bio1_p = bio1; *bio2_p = bio2; return 1; } size_t BIO_ctrl_get_read_request(BIO *bio) { return BIO_ctrl(bio, BIO_C_GET_READ_REQUEST, 0, NULL); } size_t BIO_ctrl_get_write_guarantee(BIO *bio) { return BIO_ctrl(bio, BIO_C_GET_WRITE_GUARANTEE, 0, NULL); } int BIO_shutdown_wr(BIO *bio) { return (int)BIO_ctrl(bio, BIO_C_SHUTDOWN_WR, 0, NULL); }