/* Written by Nils Larsch for the OpenSSL project. */ /* ==================================================================== * Copyright (c) 2000-2003 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include #include "../bytestring/internal.h" #include "../fipsmodule/ec/internal.h" #include "../internal.h" static const CBS_ASN1_TAG kParametersTag = CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0; static const CBS_ASN1_TAG kPublicKeyTag = CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 1; // TODO(https://crbug.com/boringssl/497): Allow parsers to specify a list of // acceptable groups, so parsers don't have to pull in all four. typedef const EC_GROUP *(*ec_group_func)(void); static const ec_group_func kAllGroups[] = { &EC_group_p224, &EC_group_p256, &EC_group_p384, &EC_group_p521, &EC_group_secp256k1, }; EC_KEY *EC_KEY_parse_private_key(CBS *cbs, const EC_GROUP *group) { CBS ec_private_key, private_key; uint64_t version; if (!CBS_get_asn1(cbs, &ec_private_key, CBS_ASN1_SEQUENCE) || !CBS_get_asn1_uint64(&ec_private_key, &version) || version != 1 || !CBS_get_asn1(&ec_private_key, &private_key, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); return NULL; } // Parse the optional parameters field. EC_KEY *ret = NULL; BIGNUM *priv_key = NULL; if (CBS_peek_asn1_tag(&ec_private_key, kParametersTag)) { // Per SEC 1, as an alternative to omitting it, one is allowed to specify // this field and put in a NULL to mean inheriting this value. This was // omitted in a previous version of this logic without problems, so leave it // unimplemented. CBS child; if (!CBS_get_asn1(&ec_private_key, &child, kParametersTag)) { OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); goto err; } const EC_GROUP *inner_group = EC_KEY_parse_parameters(&child); if (inner_group == NULL) { goto err; } if (group == NULL) { group = inner_group; } else if (EC_GROUP_cmp(group, inner_group, NULL) != 0) { // If a group was supplied externally, it must match. OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); goto err; } if (CBS_len(&child) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); goto err; } } if (group == NULL) { OPENSSL_PUT_ERROR(EC, EC_R_MISSING_PARAMETERS); goto err; } ret = EC_KEY_new(); if (ret == NULL || !EC_KEY_set_group(ret, group)) { goto err; } // Although RFC 5915 specifies the length of the key, OpenSSL historically // got this wrong, so accept any length. See upstream's // 30cd4ff294252c4b6a4b69cbef6a5b4117705d22. priv_key = BN_bin2bn(CBS_data(&private_key), CBS_len(&private_key), NULL); ret->pub_key = EC_POINT_new(group); if (priv_key == NULL || ret->pub_key == NULL || !EC_KEY_set_private_key(ret, priv_key)) { goto err; } if (CBS_peek_asn1_tag(&ec_private_key, kPublicKeyTag)) { CBS child, public_key; uint8_t padding; if (!CBS_get_asn1(&ec_private_key, &child, kPublicKeyTag) || !CBS_get_asn1(&child, &public_key, CBS_ASN1_BITSTRING) || // As in a SubjectPublicKeyInfo, the byte-encoded public key is then // encoded as a BIT STRING with bits ordered as in the DER encoding. !CBS_get_u8(&public_key, &padding) || padding != 0 || // Explicitly check |public_key| is non-empty to save the conversion // form later. CBS_len(&public_key) == 0 || !EC_POINT_oct2point(group, ret->pub_key, CBS_data(&public_key), CBS_len(&public_key), NULL) || CBS_len(&child) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); goto err; } // Save the point conversion form. // TODO(davidben): Consider removing this. ret->conv_form = (point_conversion_form_t)(CBS_data(&public_key)[0] & ~0x01); } else { // Compute the public key instead. if (!ec_point_mul_scalar_base(group, &ret->pub_key->raw, &ret->priv_key->scalar)) { goto err; } // Remember the original private-key-only encoding. // TODO(davidben): Consider removing this. ret->enc_flag |= EC_PKEY_NO_PUBKEY; } if (CBS_len(&ec_private_key) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); goto err; } // Ensure the resulting key is valid. if (!EC_KEY_check_key(ret)) { goto err; } BN_free(priv_key); return ret; err: EC_KEY_free(ret); BN_free(priv_key); return NULL; } int EC_KEY_marshal_private_key(CBB *cbb, const EC_KEY *key, unsigned enc_flags) { if (key == NULL || key->group == NULL || key->priv_key == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); return 0; } CBB ec_private_key, private_key; if (!CBB_add_asn1(cbb, &ec_private_key, CBS_ASN1_SEQUENCE) || !CBB_add_asn1_uint64(&ec_private_key, 1 /* version */) || !CBB_add_asn1(&ec_private_key, &private_key, CBS_ASN1_OCTETSTRING) || !BN_bn2cbb_padded(&private_key, BN_num_bytes(EC_GROUP_get0_order(key->group)), EC_KEY_get0_private_key(key))) { OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); return 0; } if (!(enc_flags & EC_PKEY_NO_PARAMETERS)) { CBB child; if (!CBB_add_asn1(&ec_private_key, &child, kParametersTag) || !EC_KEY_marshal_curve_name(&child, key->group) || !CBB_flush(&ec_private_key)) { OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); return 0; } } // TODO(fork): replace this flexibility with sensible default? if (!(enc_flags & EC_PKEY_NO_PUBKEY) && key->pub_key != NULL) { CBB child, public_key; if (!CBB_add_asn1(&ec_private_key, &child, kPublicKeyTag) || !CBB_add_asn1(&child, &public_key, CBS_ASN1_BITSTRING) || // As in a SubjectPublicKeyInfo, the byte-encoded public key is then // encoded as a BIT STRING with bits ordered as in the DER encoding. !CBB_add_u8(&public_key, 0 /* padding */) || !EC_POINT_point2cbb(&public_key, key->group, key->pub_key, key->conv_form, NULL) || !CBB_flush(&ec_private_key)) { OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); return 0; } } if (!CBB_flush(cbb)) { OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); return 0; } return 1; } // kPrimeFieldOID is the encoding of 1.2.840.10045.1.1. static const uint8_t kPrimeField[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01, 0x01}; struct explicit_prime_curve { CBS prime, a, b, base_x, base_y, order; }; static int parse_explicit_prime_curve(CBS *in, struct explicit_prime_curve *out) { // See RFC 3279, section 2.3.5. Note that RFC 3279 calls this structure an // ECParameters while RFC 5480 calls it a SpecifiedECDomain. CBS params, field_id, field_type, curve, base, cofactor; int has_cofactor; uint64_t version; if (!CBS_get_asn1(in, ¶ms, CBS_ASN1_SEQUENCE) || !CBS_get_asn1_uint64(¶ms, &version) || version != 1 || !CBS_get_asn1(¶ms, &field_id, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&field_id, &field_type, CBS_ASN1_OBJECT) || CBS_len(&field_type) != sizeof(kPrimeField) || OPENSSL_memcmp(CBS_data(&field_type), kPrimeField, sizeof(kPrimeField)) != 0 || !CBS_get_asn1(&field_id, &out->prime, CBS_ASN1_INTEGER) || !CBS_is_unsigned_asn1_integer(&out->prime) || CBS_len(&field_id) != 0 || !CBS_get_asn1(¶ms, &curve, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&curve, &out->a, CBS_ASN1_OCTETSTRING) || !CBS_get_asn1(&curve, &out->b, CBS_ASN1_OCTETSTRING) || // |curve| has an optional BIT STRING seed which we ignore. !CBS_get_optional_asn1(&curve, NULL, NULL, CBS_ASN1_BITSTRING) || CBS_len(&curve) != 0 || !CBS_get_asn1(¶ms, &base, CBS_ASN1_OCTETSTRING) || !CBS_get_asn1(¶ms, &out->order, CBS_ASN1_INTEGER) || !CBS_is_unsigned_asn1_integer(&out->order) || !CBS_get_optional_asn1(¶ms, &cofactor, &has_cofactor, CBS_ASN1_INTEGER) || CBS_len(¶ms) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); return 0; } if (has_cofactor) { // We only support prime-order curves so the cofactor must be one. if (CBS_len(&cofactor) != 1 || CBS_data(&cofactor)[0] != 1) { OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); return 0; } } // Require that the base point use uncompressed form. uint8_t form; if (!CBS_get_u8(&base, &form) || form != POINT_CONVERSION_UNCOMPRESSED) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM); return 0; } if (CBS_len(&base) % 2 != 0) { OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); return 0; } size_t field_len = CBS_len(&base) / 2; CBS_init(&out->base_x, CBS_data(&base), field_len); CBS_init(&out->base_y, CBS_data(&base) + field_len, field_len); return 1; } // integers_equal returns one if |bytes| is a big-endian encoding of |bn|, and // zero otherwise. static int integers_equal(const CBS *bytes, const BIGNUM *bn) { // Although, in SEC 1, Field-Element-to-Octet-String has a fixed width, // OpenSSL mis-encodes the |a| and |b|, so we tolerate any number of leading // zeros. (This matters for P-521 whose |b| has a leading 0.) CBS copy = *bytes; while (CBS_len(©) > 0 && CBS_data(©)[0] == 0) { CBS_skip(©, 1); } if (CBS_len(©) > EC_MAX_BYTES) { return 0; } uint8_t buf[EC_MAX_BYTES]; if (!BN_bn2bin_padded(buf, CBS_len(©), bn)) { ERR_clear_error(); return 0; } return CBS_mem_equal(©, buf, CBS_len(©)); } EC_GROUP *EC_KEY_parse_curve_name(CBS *cbs) { CBS named_curve; if (!CBS_get_asn1(cbs, &named_curve, CBS_ASN1_OBJECT)) { OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); return NULL; } // Look for a matching curve. for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kAllGroups); i++) { const EC_GROUP *group = kAllGroups[i](); if (CBS_mem_equal(&named_curve, group->oid, group->oid_len)) { return (EC_GROUP *)group; } } OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); return NULL; } int EC_KEY_marshal_curve_name(CBB *cbb, const EC_GROUP *group) { if (group->oid_len == 0) { OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); return 0; } CBB child; return CBB_add_asn1(cbb, &child, CBS_ASN1_OBJECT) && CBB_add_bytes(&child, group->oid, group->oid_len) && // CBB_flush(cbb); } EC_GROUP *EC_KEY_parse_parameters(CBS *cbs) { if (!CBS_peek_asn1_tag(cbs, CBS_ASN1_SEQUENCE)) { return EC_KEY_parse_curve_name(cbs); } // OpenSSL sometimes produces ECPrivateKeys with explicitly-encoded versions // of named curves. // // TODO(davidben): Remove support for this. struct explicit_prime_curve curve; if (!parse_explicit_prime_curve(cbs, &curve)) { return NULL; } const EC_GROUP *ret = NULL; BIGNUM *p = BN_new(), *a = BN_new(), *b = BN_new(), *x = BN_new(), *y = BN_new(); if (p == NULL || a == NULL || b == NULL || x == NULL || y == NULL) { goto err; } for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kAllGroups); i++) { const EC_GROUP *group = kAllGroups[i](); if (!integers_equal(&curve.order, EC_GROUP_get0_order(group))) { continue; } // The order alone uniquely identifies the group, but we check the other // parameters to avoid misinterpreting the group. if (!EC_GROUP_get_curve_GFp(group, p, a, b, NULL)) { goto err; } if (!integers_equal(&curve.prime, p) || !integers_equal(&curve.a, a) || !integers_equal(&curve.b, b)) { break; } if (!EC_POINT_get_affine_coordinates_GFp( group, EC_GROUP_get0_generator(group), x, y, NULL)) { goto err; } if (!integers_equal(&curve.base_x, x) || !integers_equal(&curve.base_y, y)) { break; } ret = group; break; } if (ret == NULL) { OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); } err: BN_free(p); BN_free(a); BN_free(b); BN_free(x); BN_free(y); return (EC_GROUP *)ret; } int EC_POINT_point2cbb(CBB *out, const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, BN_CTX *ctx) { size_t len = EC_POINT_point2oct(group, point, form, NULL, 0, ctx); if (len == 0) { return 0; } uint8_t *p; return CBB_add_space(out, &p, len) && EC_POINT_point2oct(group, point, form, p, len, ctx) == len; } EC_KEY *d2i_ECPrivateKey(EC_KEY **out, const uint8_t **inp, long len) { // This function treats its |out| parameter differently from other |d2i| // functions. If supplied, take the group from |*out|. const EC_GROUP *group = NULL; if (out != NULL && *out != NULL) { group = EC_KEY_get0_group(*out); } if (len < 0) { OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); return NULL; } CBS cbs; CBS_init(&cbs, *inp, (size_t)len); EC_KEY *ret = EC_KEY_parse_private_key(&cbs, group); if (ret == NULL) { return NULL; } if (out != NULL) { EC_KEY_free(*out); *out = ret; } *inp = CBS_data(&cbs); return ret; } int i2d_ECPrivateKey(const EC_KEY *key, uint8_t **outp) { CBB cbb; if (!CBB_init(&cbb, 0) || !EC_KEY_marshal_private_key(&cbb, key, EC_KEY_get_enc_flags(key))) { CBB_cleanup(&cbb); return -1; } return CBB_finish_i2d(&cbb, outp); } EC_KEY *d2i_ECParameters(EC_KEY **out_key, const uint8_t **inp, long len) { if (len < 0) { return NULL; } EC_GROUP *group = d2i_ECPKParameters(NULL, inp, len); if (group == NULL) { return NULL; } EC_KEY *ret = EC_KEY_new(); if (ret == NULL || !EC_KEY_set_group(ret, group)) { EC_KEY_free(ret); return NULL; } if (out_key != NULL) { EC_KEY_free(*out_key); *out_key = ret; } return ret; } EC_GROUP *d2i_ECPKParameters(EC_GROUP **out_group, const uint8_t **inp, long len) { if (inp == NULL || len < 0) { return NULL; } CBS cbs; CBS_init(&cbs, *inp, (size_t)len); EC_GROUP *group = EC_KEY_parse_parameters(&cbs); if (group == NULL) { return NULL; } if (out_group != NULL) { EC_GROUP_free(*out_group); *out_group = group; } *inp = CBS_data(&cbs); return group; } int i2d_ECParameters(const EC_KEY *key, uint8_t **outp) { if (key == NULL || key->group == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); return -1; } return i2d_ECPKParameters(key->group, outp); } int i2d_ECPKParameters(const EC_GROUP *group, uint8_t **outp) { if (group == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); return -1; } CBB cbb; if (!CBB_init(&cbb, 0) || !EC_KEY_marshal_curve_name(&cbb, group)) { CBB_cleanup(&cbb); return -1; } return CBB_finish_i2d(&cbb, outp); } EC_GROUP *d2i_ECPKParameters_bio(BIO *bio, EC_GROUP **out_group) { if (bio == NULL) { OPENSSL_PUT_ERROR(PKCS7, ERR_R_PASSED_NULL_PARAMETER); return NULL; } uint8_t *data; size_t len; if (!BIO_read_asn1(bio, &data, &len, INT_MAX)) { return NULL; } const uint8_t *ptr = data; EC_GROUP *ret = d2i_ECPKParameters(out_group, &ptr, len); OPENSSL_free(data); return ret; } int i2d_ECPKParameters_bio(BIO *bio, const EC_GROUP *group) { if (bio == NULL || group == NULL) { OPENSSL_PUT_ERROR(PKCS7, ERR_R_PASSED_NULL_PARAMETER); return 0; } uint8_t *out = NULL; int len = i2d_ECPKParameters(group, &out); if (out == NULL) { return 0; } int ret = BIO_write_all(bio, out, len); OPENSSL_free(out); return ret; } EC_KEY *o2i_ECPublicKey(EC_KEY **keyp, const uint8_t **inp, long len) { EC_KEY *ret = NULL; if (keyp == NULL || *keyp == NULL || (*keyp)->group == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); return NULL; } ret = *keyp; if (ret->pub_key == NULL && (ret->pub_key = EC_POINT_new(ret->group)) == NULL) { return NULL; } if (!EC_POINT_oct2point(ret->group, ret->pub_key, *inp, len, NULL)) { OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); return NULL; } // save the point conversion form ret->conv_form = (point_conversion_form_t)(*inp[0] & ~0x01); *inp += len; return ret; } int i2o_ECPublicKey(const EC_KEY *key, uint8_t **outp) { if (key == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); return 0; } CBB cbb; if (!CBB_init(&cbb, 0) || // !EC_POINT_point2cbb(&cbb, key->group, key->pub_key, key->conv_form, NULL)) { CBB_cleanup(&cbb); return -1; } int ret = CBB_finish_i2d(&cbb, outp); // Historically, this function used the wrong return value on error. return ret > 0 ? ret : 0; } size_t EC_get_builtin_curves(EC_builtin_curve *out_curves, size_t max_num_curves) { if (max_num_curves > OPENSSL_ARRAY_SIZE(kAllGroups)) { max_num_curves = OPENSSL_ARRAY_SIZE(kAllGroups); } for (size_t i = 0; i < max_num_curves; i++) { const EC_GROUP *group = kAllGroups[i](); out_curves[i].nid = group->curve_name; out_curves[i].comment = group->comment; } return OPENSSL_ARRAY_SIZE(kAllGroups); } static size_t EC_POINT_point2buf(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, uint8_t **pbuf, BN_CTX *ctx) { size_t len; uint8_t *buf; len = EC_POINT_point2oct(group, point, form, NULL, 0, NULL); if (len == 0) { return 0; } buf = OPENSSL_malloc(len); if (buf == NULL) { OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE); return 0; } len = EC_POINT_point2oct(group, point, form, buf, len, ctx); if (len == 0) { OPENSSL_free(buf); return 0; } *pbuf = buf; return len; } BIGNUM *EC_POINT_point2bn(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, BIGNUM *ret, BN_CTX *ctx) { size_t buf_len = 0; uint8_t *buf; buf_len = EC_POINT_point2buf(group, point, form, &buf, ctx); if (buf_len == 0) { return NULL; } ret = BN_bin2bn(buf, buf_len, ret); OPENSSL_free(buf); return ret; } EC_POINT *EC_POINT_bn2point(const EC_GROUP *group, const BIGNUM *bn, EC_POINT *point, BN_CTX *ctx) { if (group == NULL || bn == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); return NULL; } // Allocate buffer and length. size_t buf_len = BN_num_bytes(bn); if (buf_len == 0) { // See https://github.com/openssl/openssl/issues/10258. buf_len = 1; } uint8_t *buf = OPENSSL_malloc(buf_len); if (buf == NULL) { return NULL; } if (BN_bn2bin_padded(buf, buf_len, bn) < 0) { OPENSSL_free(buf); return NULL; } // Use the user-provided |point| if there is one. Otherwise, we allocate a new // |EC_POINT| if |point| is NULL. EC_POINT *ret; if (point != NULL) { ret = point; } else { ret = EC_POINT_new(group); if (ret == NULL) { OPENSSL_free(buf); return NULL; } } if (!EC_POINT_oct2point(group, ret, buf, buf_len, ctx)) { if (ret != point) { // If the user did not provide a |point|, we free the |EC_POINT| we // allocated. EC_POINT_free(ret); ret = NULL; } } OPENSSL_free(buf); return ret; } int ECPKParameters_print(BIO *bio, const EC_GROUP *group, int offset) { return 1; }