/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include "../fipsmodule/evp/internal.h" #include "../bytestring/internal.h" #include "../internal.h" #include "internal.h" static const EVP_PKEY_ASN1_METHOD *parse_key_type(CBS *cbs) { CBS oid; if (!CBS_get_asn1(cbs, &oid, CBS_ASN1_OBJECT)) { return NULL; } const EVP_PKEY_ASN1_METHOD *const *asn1_methods = AWSLC_non_fips_pkey_evp_asn1_methods(); for (size_t i = 0; i < ASN1_EVP_PKEY_METHODS; i++) { const EVP_PKEY_ASN1_METHOD *method = asn1_methods[i]; if (CBS_len(&oid) == method->oid_len && OPENSSL_memcmp(CBS_data(&oid), method->oid, method->oid_len) == 0) { return method; } } // Special logic to handle the rarer |NID_rsa|. // https://www.itu.int/ITU-T/formal-language/itu-t/x/x509/2008/AlgorithmObjectIdentifiers.html if (OBJ_cbs2nid(&oid) == NID_rsa) { return &rsa_asn1_meth; } return NULL; } EVP_PKEY *EVP_parse_public_key(CBS *cbs) { // Parse the SubjectPublicKeyInfo. CBS spki, algorithm, key; uint8_t padding; if (!CBS_get_asn1(cbs, &spki, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&spki, &algorithm, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&spki, &key, CBS_ASN1_BITSTRING) || CBS_len(&spki) != 0) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); return NULL; } const EVP_PKEY_ASN1_METHOD *method = parse_key_type(&algorithm); if (method == NULL) { OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); return NULL; } if (// Every key type defined encodes the key as a byte string with the same // conversion to BIT STRING. !CBS_get_u8(&key, &padding) || padding != 0) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); return NULL; } // Set up an |EVP_PKEY| of the appropriate type. EVP_PKEY *ret = EVP_PKEY_new(); if (ret == NULL) { goto err; } evp_pkey_set_method(ret, method); // Call into the type-specific SPKI decoding function. if (ret->ameth->pub_decode == NULL) { OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); goto err; } if (!ret->ameth->pub_decode(ret, &algorithm, &key)) { goto err; } return ret; err: EVP_PKEY_free(ret); return NULL; } int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key) { if (key->ameth == NULL || key->ameth->pub_encode == NULL) { OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); return 0; } return key->ameth->pub_encode(cbb, key); } static const unsigned kAttributesTag = CBS_ASN1_CONTEXT_SPECIFIC | 0; static const unsigned kPublicKeyTag = CBS_ASN1_CONTEXT_SPECIFIC | 1; EVP_PKEY *EVP_parse_private_key(CBS *cbs) { // Parse the PrivateKeyInfo (RFC 5208) or OneAsymmetricKey (RFC 5958). CBS pkcs8, algorithm, key, public_key; uint64_t version; if (!CBS_get_asn1(cbs, &pkcs8, CBS_ASN1_SEQUENCE) || !CBS_get_asn1_uint64(&pkcs8, &version) || version > PKCS8_VERSION_TWO || !CBS_get_asn1(&pkcs8, &algorithm, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&pkcs8, &key, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); return NULL; } const EVP_PKEY_ASN1_METHOD *method = parse_key_type(&algorithm); if (method == NULL) { OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); return NULL; } // A PrivateKeyInfo & OneAsymmetricKey may optionally contain a SET of Attributes which // we ignore. if (CBS_peek_asn1_tag(&pkcs8, kAttributesTag)) { if (!CBS_get_asn1(cbs, NULL, kAttributesTag)) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); return NULL; } } int has_pub = 0; // A OneAsymmetricKey may contain an optional PublicKey BIT STRING which is // implicitly encoded. To support public keys that might not be a size // divisible by 8 we leave the first octet of the bit string present, which // specifies the padded bit count between 0 and 7. if (CBS_peek_asn1_tag(&pkcs8, kPublicKeyTag)) { if (version != PKCS8_VERSION_TWO || !CBS_get_asn1(&pkcs8, &public_key, kPublicKeyTag)) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); return NULL; } has_pub = 1; } // Set up an |EVP_PKEY| of the appropriate type. EVP_PKEY *ret = EVP_PKEY_new(); if (ret == NULL) { goto err; } evp_pkey_set_method(ret, method); // Call into the type-specific PrivateKeyInfo decoding function. if (ret->ameth->priv_decode == NULL) { OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); goto err; } if (!ret->ameth->priv_decode(ret, &algorithm, &key, has_pub ? &public_key : NULL)) { goto err; } return ret; err: EVP_PKEY_free(ret); return NULL; } int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key) { if (key->ameth == NULL || key->ameth->priv_encode == NULL) { OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); return 0; } return key->ameth->priv_encode(cbb, key); } int EVP_marshal_private_key_v2(CBB *cbb, const EVP_PKEY *key) { if (key->ameth == NULL || key->ameth->priv_encode_v2 == NULL) { OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); return 0; } return key->ameth->priv_encode_v2(cbb, key); } static EVP_PKEY *old_priv_decode(CBS *cbs, int type) { EVP_PKEY *ret = EVP_PKEY_new(); if (ret == NULL) { return NULL; } switch (type) { case EVP_PKEY_EC: { EC_KEY *ec_key = EC_KEY_parse_private_key(cbs, NULL); if (ec_key == NULL || !EVP_PKEY_assign_EC_KEY(ret, ec_key)) { EC_KEY_free(ec_key); goto err; } return ret; } case EVP_PKEY_DSA: { DSA *dsa = DSA_parse_private_key(cbs); if (dsa == NULL || !EVP_PKEY_assign_DSA(ret, dsa)) { DSA_free(dsa); goto err; } return ret; } case EVP_PKEY_RSA: { RSA *rsa = RSA_parse_private_key(cbs); if (rsa == NULL || !EVP_PKEY_assign_RSA(ret, rsa)) { RSA_free(rsa); goto err; } return ret; } default: OPENSSL_PUT_ERROR(EVP, EVP_R_UNKNOWN_PUBLIC_KEY_TYPE); goto err; } err: EVP_PKEY_free(ret); return NULL; } EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp, long len) { if (len < 0) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); return NULL; } // Parse with the legacy format. CBS cbs; CBS_init(&cbs, *inp, (size_t)len); EVP_PKEY *ret = old_priv_decode(&cbs, type); if (ret == NULL) { // Try again with PKCS#8. ERR_clear_error(); CBS_init(&cbs, *inp, (size_t)len); ret = EVP_parse_private_key(&cbs); if (ret == NULL) { return NULL; } if (ret->type != type) { OPENSSL_PUT_ERROR(EVP, EVP_R_DIFFERENT_KEY_TYPES); EVP_PKEY_free(ret); return NULL; } } if (out != NULL) { EVP_PKEY_free(*out); *out = ret; } *inp = CBS_data(&cbs); return ret; } // num_elements parses one SEQUENCE from |in| and returns the number of elements // in it. On parse error, it returns zero. static size_t num_elements(const uint8_t *in, size_t in_len) { CBS cbs, sequence; CBS_init(&cbs, in, (size_t)in_len); if (!CBS_get_asn1(&cbs, &sequence, CBS_ASN1_SEQUENCE)) { return 0; } size_t count = 0; while (CBS_len(&sequence) > 0) { if (!CBS_get_any_asn1_element(&sequence, NULL, NULL, NULL)) { return 0; } count++; } return count; } EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len) { if (len < 0) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); return NULL; } // Parse the input as a PKCS#8 PrivateKeyInfo. CBS cbs; CBS_init(&cbs, *inp, (size_t)len); EVP_PKEY *ret = EVP_parse_private_key(&cbs); if (ret != NULL) { if (out != NULL) { EVP_PKEY_free(*out); *out = ret; } *inp = CBS_data(&cbs); return ret; } ERR_clear_error(); // Count the elements to determine the legacy key format. switch (num_elements(*inp, (size_t)len)) { case 4: return d2i_PrivateKey(EVP_PKEY_EC, out, inp, len); case 6: return d2i_PrivateKey(EVP_PKEY_DSA, out, inp, len); default: return d2i_PrivateKey(EVP_PKEY_RSA, out, inp, len); } } int i2d_PublicKey(const EVP_PKEY *key, uint8_t **outp) { switch (key->type) { case EVP_PKEY_RSA: return i2d_RSAPublicKey(key->pkey.rsa, outp); case EVP_PKEY_DSA: return i2d_DSAPublicKey(key->pkey.dsa, outp); case EVP_PKEY_EC: return i2o_ECPublicKey(key->pkey.ec, outp); default: OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); return -1; } } EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **out, const uint8_t **inp, long len) { EVP_PKEY *ret = EVP_PKEY_new(); if (ret == NULL) { return NULL; } CBS cbs; CBS_init(&cbs, *inp, len < 0 ? 0 : (size_t)len); switch (type) { case EVP_PKEY_RSA: { RSA *rsa = RSA_parse_public_key(&cbs); if (rsa == NULL || !EVP_PKEY_assign_RSA(ret, rsa)) { RSA_free(rsa); goto err; } break; } // Unlike OpenSSL, we do not support EC keys with this API. The raw EC // public key serialization requires knowing the group. In OpenSSL, calling // this function with |EVP_PKEY_EC| and setting |out| to NULL does not work. // It requires |*out| to include a partially-initialized |EVP_PKEY| to // extract the group. default: OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); goto err; } *inp = CBS_data(&cbs); if (out != NULL) { EVP_PKEY_free(*out); *out = ret; } return ret; err: EVP_PKEY_free(ret); return NULL; } EVP_PKEY *d2i_PUBKEY(EVP_PKEY **out, const uint8_t **inp, long len) { if (len < 0) { return NULL; } CBS cbs; CBS_init(&cbs, *inp, (size_t)len); EVP_PKEY *ret = EVP_parse_public_key(&cbs); if (ret == NULL) { return NULL; } if (out != NULL) { EVP_PKEY_free(*out); *out = ret; } *inp = CBS_data(&cbs); return ret; } int i2d_PUBKEY(const EVP_PKEY *pkey, uint8_t **outp) { if (pkey == NULL) { return 0; } CBB cbb; if (!CBB_init(&cbb, 128) || !EVP_marshal_public_key(&cbb, pkey)) { CBB_cleanup(&cbb); return -1; } return CBB_finish_i2d(&cbb, outp); } RSA *d2i_RSA_PUBKEY(RSA **out, const uint8_t **inp, long len) { if (len < 0) { return NULL; } CBS cbs; CBS_init(&cbs, *inp, (size_t)len); EVP_PKEY *pkey = EVP_parse_public_key(&cbs); if (pkey == NULL) { return NULL; } RSA *rsa = EVP_PKEY_get1_RSA(pkey); EVP_PKEY_free(pkey); if (rsa == NULL) { return NULL; } if (out != NULL) { RSA_free(*out); *out = rsa; } *inp = CBS_data(&cbs); return rsa; } int i2d_RSA_PUBKEY(const RSA *rsa, uint8_t **outp) { if (rsa == NULL) { return 0; } int ret = -1; EVP_PKEY *pkey = EVP_PKEY_new(); if (pkey == NULL || !EVP_PKEY_set1_RSA(pkey, (RSA *)rsa)) { goto err; } ret = i2d_PUBKEY(pkey, outp); err: EVP_PKEY_free(pkey); return ret; } DSA *d2i_DSA_PUBKEY(DSA **out, const uint8_t **inp, long len) { if (len < 0) { return NULL; } CBS cbs; CBS_init(&cbs, *inp, (size_t)len); EVP_PKEY *pkey = EVP_parse_public_key(&cbs); if (pkey == NULL) { return NULL; } DSA *dsa = EVP_PKEY_get1_DSA(pkey); EVP_PKEY_free(pkey); if (dsa == NULL) { return NULL; } if (out != NULL) { DSA_free(*out); *out = dsa; } *inp = CBS_data(&cbs); return dsa; } int i2d_DSA_PUBKEY(const DSA *dsa, uint8_t **outp) { if (dsa == NULL) { return 0; } int ret = -1; EVP_PKEY *pkey = EVP_PKEY_new(); if (pkey == NULL || !EVP_PKEY_set1_DSA(pkey, (DSA *)dsa)) { goto err; } ret = i2d_PUBKEY(pkey, outp); err: EVP_PKEY_free(pkey); return ret; } EC_KEY *d2i_EC_PUBKEY(EC_KEY **out, const uint8_t **inp, long len) { if (len < 0) { return NULL; } CBS cbs; CBS_init(&cbs, *inp, (size_t)len); EVP_PKEY *pkey = EVP_parse_public_key(&cbs); if (pkey == NULL) { return NULL; } EC_KEY *ec_key = EVP_PKEY_get1_EC_KEY(pkey); EVP_PKEY_free(pkey); if (ec_key == NULL) { return NULL; } if (out != NULL) { EC_KEY_free(*out); *out = ec_key; } *inp = CBS_data(&cbs); return ec_key; } int i2d_EC_PUBKEY(const EC_KEY *ec_key, uint8_t **outp) { if (ec_key == NULL) { return 0; } int ret = -1; EVP_PKEY *pkey = EVP_PKEY_new(); if (pkey == NULL || !EVP_PKEY_set1_EC_KEY(pkey, (EC_KEY *)ec_key)) { goto err; } ret = i2d_PUBKEY(pkey, outp); err: EVP_PKEY_free(pkey); return ret; } int EVP_PKEY_asn1_get_count(void) { return asn1_evp_pkey_methods_size; } const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_get0(int idx) { if (idx < 0 || idx >= EVP_PKEY_asn1_get_count()) { return NULL; } return asn1_evp_pkey_methods[idx]; } const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find(ENGINE **_pe, int type) { for (size_t i = 0; i < (size_t)EVP_PKEY_asn1_get_count(); i++) { const EVP_PKEY_ASN1_METHOD *ameth = EVP_PKEY_asn1_get0(i); if (ameth->pkey_id == type) { return ameth; } } return NULL; } const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find_str(ENGINE **_pe, const char *name, int len) { if (len < 0) { return NULL; } // OPENSSL_strnlen returns an i, where str[i] == 0 const size_t name_len = OPENSSL_strnlen(name, len); for (size_t i = 0; i < (size_t)EVP_PKEY_asn1_get_count(); i++) { const EVP_PKEY_ASN1_METHOD *ameth = EVP_PKEY_asn1_get0(i); const size_t longest_pem_str_len = 10; // "DILITHIUM3" const size_t pem_str_len = OPENSSL_strnlen(ameth->pem_str, longest_pem_str_len); // OPENSSL_strncasecmp(a, b, n) compares up to index n-1 const size_t cmp_len = 1 + ((name_len < pem_str_len) ? name_len : pem_str_len); if (0 == OPENSSL_strncasecmp(ameth->pem_str, name, cmp_len)) { return ameth; } } return NULL; } int EVP_PKEY_asn1_get0_info(int *ppkey_id, int *pkey_base_id, int *ppkey_flags, const char **pinfo, const char **ppem_str, const EVP_PKEY_ASN1_METHOD *ameth) { if (!ameth) { return 0; } if (ppkey_id) { *ppkey_id = ameth->pkey_id; } if (pkey_base_id) { *pkey_base_id = ameth->pkey_id; } // This value is not supported. if (ppkey_flags) { *ppkey_flags = 0; } if (pinfo) { *pinfo = ameth->info; } if (ppem_str) { *ppem_str = ameth->pem_str; } return 1; }