/* ==================================================================== * Copyright (c) 2006 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include "internal.h" #include "../internal.h" #include "../fipsmodule/evp/internal.h" #include "../fipsmodule/rsa/internal.h" #ifdef ENABLE_DILITHIUM #include "../dilithium/sig_dilithium.h" #endif static int print_hex(BIO *bp, const uint8_t *data, size_t len, int off) { for (size_t i = 0; i < len; i++) { if ((i % 15) == 0) { if (BIO_puts(bp, "\n") <= 0 || // !BIO_indent(bp, off + 4, 128)) { return 0; } } if (BIO_printf(bp, "%02x%s", data[i], (i + 1 == len) ? "" : ":") <= 0) { return 0; } } if (BIO_write(bp, "\n", 1) <= 0) { return 0; } return 1; } static int bn_print(BIO *bp, const char *name, const BIGNUM *num, int off) { if (num == NULL) { return 1; } if (!BIO_indent(bp, off, 128)) { return 0; } if (BN_is_zero(num)) { if (BIO_printf(bp, "%s 0\n", name) <= 0) { return 0; } return 1; } uint64_t u64; if (BN_get_u64(num, &u64)) { const char *neg = BN_is_negative(num) ? "-" : ""; return BIO_printf(bp, "%s %s%" PRIu64 " (%s0x%" PRIx64 ")\n", name, neg, u64, neg, u64) > 0; } if (BIO_printf(bp, "%s%s", name, (BN_is_negative(num)) ? " (Negative)" : "") <= 0) { return 0; } // Print |num| in hex, adding a leading zero, as in ASN.1, if the high bit // is set. // // TODO(davidben): Do we need to do this? We already print "(Negative)" above // and negative values are never valid in keys anyway. size_t len = BN_num_bytes(num); uint8_t *buf = OPENSSL_zalloc(len + 1); if (buf == NULL) { return 0; } BN_bn2bin(num, buf + 1); int ret; if (len > 0 && (buf[1] & 0x80) != 0) { // Print the whole buffer. ret = print_hex(bp, buf, len + 1, off); } else { // Skip the leading zero. ret = print_hex(bp, buf + 1, len, off); } OPENSSL_free(buf); return ret; } // RSA keys. static int do_rsa_print(BIO *out, const RSA *rsa, int off, int include_private) { int mod_len = 0; if (rsa->n != NULL) { mod_len = BN_num_bits(rsa->n); } if (!BIO_indent(out, off, 128)) { return 0; } const char *s, *str; if (include_private && rsa->d) { if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) { return 0; } str = "modulus:"; s = "publicExponent:"; } else { if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) { return 0; } str = "Modulus:"; s = "Exponent:"; } if (!bn_print(out, str, rsa->n, off) || !bn_print(out, s, rsa->e, off)) { return 0; } if (include_private) { if (!bn_print(out, "privateExponent:", rsa->d, off) || !bn_print(out, "prime1:", rsa->p, off) || !bn_print(out, "prime2:", rsa->q, off) || !bn_print(out, "exponent1:", rsa->dmp1, off) || !bn_print(out, "exponent2:", rsa->dmq1, off) || !bn_print(out, "coefficient:", rsa->iqmp, off)) { return 0; } } return 1; } static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { return do_rsa_print(bp, EVP_PKEY_get0_RSA(pkey), indent, 0); } static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { return do_rsa_print(bp, EVP_PKEY_get0_RSA(pkey), indent, 1); } // DSA keys. static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) { const BIGNUM *priv_key = NULL; if (ptype == 2) { priv_key = DSA_get0_priv_key(x); } const BIGNUM *pub_key = NULL; if (ptype > 0) { pub_key = DSA_get0_pub_key(x); } const char *ktype = "DSA-Parameters"; if (ptype == 2) { ktype = "Private-Key"; } else if (ptype == 1) { ktype = "Public-Key"; } if (!BIO_indent(bp, off, 128) || BIO_printf(bp, "%s: (%u bit)\n", ktype, BN_num_bits(DSA_get0_p(x))) <= 0 || // |priv_key| and |pub_key| may be NULL, in which case |bn_print| will // silently skip them. !bn_print(bp, "priv:", priv_key, off) || !bn_print(bp, "pub:", pub_key, off) || !bn_print(bp, "P:", DSA_get0_p(x), off) || !bn_print(bp, "Q:", DSA_get0_q(x), off) || !bn_print(bp, "G:", DSA_get0_g(x), off)) { return 0; } return 1; } static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent) { return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 0); } static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 1); } static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 2); } // EC keys. static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, int ktype) { const EC_GROUP *group; if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) { OPENSSL_PUT_ERROR(EVP, ERR_R_PASSED_NULL_PARAMETER); return 0; } const char *ecstr; if (ktype == 2) { ecstr = "Private-Key"; } else if (ktype == 1) { ecstr = "Public-Key"; } else { ecstr = "ECDSA-Parameters"; } if (!BIO_indent(bp, off, 128)) { return 0; } int curve_name = EC_GROUP_get_curve_name(group); if (BIO_printf(bp, "%s: (%s)\n", ecstr, curve_name == NID_undef ? "unknown curve" : EC_curve_nid2nist(curve_name)) <= 0) { return 0; } if (ktype == 2) { const BIGNUM *priv_key = EC_KEY_get0_private_key(x); if (priv_key != NULL && // !bn_print(bp, "priv:", priv_key, off)) { return 0; } } if (ktype > 0 && EC_KEY_get0_public_key(x) != NULL) { uint8_t *pub = NULL; size_t pub_len = EC_KEY_key2buf(x, EC_KEY_get_conv_form(x), &pub, NULL); if (pub_len == 0) { return 0; } int ret = BIO_indent(bp, off, 128) && // BIO_puts(bp, "pub:") > 0 && // print_hex(bp, pub, pub_len, off); OPENSSL_free(pub); if (!ret) { return 0; } } return 1; } static int eckey_param_print(BIO *bp, const EVP_PKEY *pkey, int indent) { return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 0); } static int eckey_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 1); } static int eckey_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 2); } #ifdef ENABLE_DILITHIUM // Dilithium keys. static int do_dilithium3_print(BIO *bp, const EVP_PKEY *pkey, int off, int ptype) { if (pkey == NULL) { OPENSSL_PUT_ERROR(EVP, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (!BIO_indent(bp, off, 128)) { return 0; } const DILITHIUM3_KEY *key = pkey->pkey.ptr; int bit_len = 0; if (ptype == 2) { bit_len = DILITHIUM3_PRIVATE_KEY_BYTES; if (BIO_printf(bp, "Private-Key: (%d bit)\n", bit_len) <= 0) { return 0; } print_hex(bp, key->priv, bit_len, off); } else { bit_len = DILITHIUM3_PUBLIC_KEY_BYTES; if (BIO_printf(bp, "Public-Key: (%d bit)\n", bit_len) <= 0) { return 0; } int ret = print_hex(bp, key->pub, bit_len, off); if (!ret) { return 0; } } return 1; } static int dilithium3_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { return do_dilithium3_print(bp, pkey, indent, 1); } static int dilithium3_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { return do_dilithium3_print(bp, pkey, indent, 2); } #endif typedef struct { int type; int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent); int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent); int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent); } EVP_PKEY_PRINT_METHOD; static EVP_PKEY_PRINT_METHOD kPrintMethods[] = { { EVP_PKEY_RSA, rsa_pub_print, rsa_priv_print, NULL /* param_print */, }, { EVP_PKEY_DSA, dsa_pub_print, dsa_priv_print, dsa_param_print, }, { EVP_PKEY_EC, eckey_pub_print, eckey_priv_print, eckey_param_print, }, #ifdef ENABLE_DILITHIUM { EVP_PKEY_DILITHIUM3, dilithium3_pub_print, dilithium3_priv_print, NULL /* param_print */, }, #endif }; static size_t kPrintMethodsLen = OPENSSL_ARRAY_SIZE(kPrintMethods); static EVP_PKEY_PRINT_METHOD *find_method(int type) { for (size_t i = 0; i < kPrintMethodsLen; i++) { if (kPrintMethods[i].type == type) { return &kPrintMethods[i]; } } return NULL; } static int print_unsupported(BIO *out, const EVP_PKEY *pkey, int indent, const char *kstr) { BIO_indent(out, indent, 128); BIO_printf(out, "%s algorithm unsupported\n", kstr); return 1; } int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx) { EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey)); if (method != NULL && method->pub_print != NULL) { return method->pub_print(out, pkey, indent); } return print_unsupported(out, pkey, indent, "Public Key"); } int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx) { EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey)); if (method != NULL && method->priv_print != NULL) { return method->priv_print(out, pkey, indent); } return print_unsupported(out, pkey, indent, "Private Key"); } int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx) { EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey)); if (method != NULL && method->param_print != NULL) { return method->param_print(out, pkey, indent); } return print_unsupported(out, pkey, indent, "Parameters"); }