#! /usr/bin/env perl # Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html ###################################################################### ## Constant-time SSSE3 AES core implementation. ## version 0.1 ## ## By Mike Hamburg (Stanford University), 2009 ## Public domain. ## ## For details see http://shiftleft.org/papers/vector_aes/ and ## http://crypto.stanford.edu/vpaes/. ## ###################################################################### # Adapted from the original x86_64 version and 's ARMv8 # version. # # armv7, aarch64, and x86_64 differ in several ways: # # * x86_64 SSSE3 instructions are two-address (destination operand is also a # source), while NEON is three-address (destination operand is separate from # two sources). # # * aarch64 has 32 SIMD registers available, while x86_64 and armv7 have 16. # # * x86_64 instructions can take memory references, while ARM is a load/store # architecture. This means we sometimes need a spare register. # # * aarch64 and x86_64 have 128-bit byte shuffle instructions (tbl and pshufb), # while armv7 only has a 64-bit byte shuffle (vtbl). # # This means this armv7 version must be a mix of both aarch64 and x86_64 # implementations. armv7 and aarch64 have analogous SIMD instructions, so we # base the instructions on aarch64. However, we cannot use aarch64's register # allocation. x86_64's register count matches, but x86_64 is two-address. # vpaes-armv8.pl already accounts for this in the comments, which use # three-address AVX instructions instead of the original SSSE3 ones. We base # register usage on these comments, which are preserved in this file. # # This means we do not use separate input and output registers as in aarch64 and # cannot pin as many constants in the preheat functions. However, the load/store # architecture means we must still deviate from x86_64 in places. # # Next, we account for the byte shuffle instructions. vtbl takes 64-bit source # and destination and 128-bit table. Fortunately, armv7 also allows addressing # upper and lower halves of each 128-bit register. The lower half of q{N} is # d{2*N}. The upper half is d{2*N+1}. Instead of the following non-existent # instruction, # # vtbl.8 q0, q1, q2 @ Index each of q2's 16 bytes into q1. Store in q0. # # we write: # # vtbl.8 d0, q1, d4 @ Index each of d4's 8 bytes into q1. Store in d0. # vtbl.8 d1, q1, d5 @ Index each of d5's 8 bytes into q1. Store in d1. # # For readability, we write d0 and d1 as q0#lo and q0#hi, respectively and # post-process before outputting. (This is adapted from ghash-armv4.pl.) Note, # however, that destination (q0) and table (q1) registers may no longer match. # We adjust the register usage from x86_64 to avoid this. (Unfortunately, the # two-address pshufb always matched these operands, so this is common.) # # This file also runs against the limit of ARMv7's ADR pseudo-instruction. ADR # expands to an ADD or SUB of the pc register to find an address. That immediate # must fit in ARM's encoding scheme: 8 bits of constant and 4 bits of rotation. # This means larger values must be more aligned. # # ARM additionally has two encodings, ARM and Thumb mode. Our assembly files may # use either encoding (do we actually need to support this?). In ARM mode, the # distances get large enough to require 16-byte alignment. Moving constants # closer to their use resolves most of this, but common constants in # _vpaes_consts are used by the whole file. Affected ADR instructions must be # placed at 8 mod 16 (the pc register is 8 ahead). Instructions with this # constraint have been commented. # # For details on ARM's immediate value encoding scheme, see # https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/ # # Finally, a summary of armv7 and aarch64 SIMD syntax differences: # # * armv7 prefixes SIMD instructions with 'v', while aarch64 does not. # # * armv7 SIMD registers are named like q0 (and d0 for the half-width ones). # aarch64 names registers like v0, and denotes half-width operations in an # instruction suffix (see below). # # * aarch64 embeds size and lane information in register suffixes. v0.16b is # 16 bytes, v0.8h is eight u16s, v0.4s is four u32s, and v0.2d is two u64s. # armv7 embeds the total size in the register name (see above) and the size of # each element in an instruction suffix, which may look like vmov.i8, # vshr.u8, or vtbl.8, depending on instruction. use strict; if ($#ARGV < 1) { die "Not enough arguments provided. Two arguments are necessary: the flavour and the output file path."; } my $flavour = shift; my $output = shift; $0 =~ m/(.*[\/\\])[^\/\\]+$/; my $dir=$1; my $xlate; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; my $code = ""; $code.=<<___; .syntax unified .arch armv7-a .fpu neon #if defined(__thumb2__) .thumb #else .code 32 #endif .text .type _vpaes_consts,%object .align 7 @ totally strategic alignment _vpaes_consts: .Lk_mc_forward: @ mc_forward .quad 0x0407060500030201, 0x0C0F0E0D080B0A09 .quad 0x080B0A0904070605, 0x000302010C0F0E0D .quad 0x0C0F0E0D080B0A09, 0x0407060500030201 .quad 0x000302010C0F0E0D, 0x080B0A0904070605 .Lk_mc_backward:@ mc_backward .quad 0x0605040702010003, 0x0E0D0C0F0A09080B .quad 0x020100030E0D0C0F, 0x0A09080B06050407 .quad 0x0E0D0C0F0A09080B, 0x0605040702010003 .quad 0x0A09080B06050407, 0x020100030E0D0C0F .Lk_sr: @ sr .quad 0x0706050403020100, 0x0F0E0D0C0B0A0908 .quad 0x030E09040F0A0500, 0x0B06010C07020D08 .quad 0x0F060D040B020900, 0x070E050C030A0108 .quad 0x0B0E0104070A0D00, 0x0306090C0F020508 @ @ "Hot" constants @ .Lk_inv: @ inv, inva .quad 0x0E05060F0D080180, 0x040703090A0B0C02 .quad 0x01040A060F0B0780, 0x030D0E0C02050809 .Lk_ipt: @ input transform (lo, hi) .quad 0xC2B2E8985A2A7000, 0xCABAE09052227808 .quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81 .Lk_sbo: @ sbou, sbot .quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878 .quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA .Lk_sb1: @ sb1u, sb1t .quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF .quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544 .Lk_sb2: @ sb2u, sb2t .quad 0x69EB88400AE12900, 0xC2A163C8AB82234A .quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD .asciz "Vector Permutation AES for ARMv7 NEON, Mike Hamburg (Stanford University)" .size _vpaes_consts,.-_vpaes_consts .align 6 ___ { my ($inp,$out,$key) = map("r$_", (0..2)); my ($invlo,$invhi) = map("q$_", (10..11)); my ($sb1u,$sb1t,$sb2u,$sb2t) = map("q$_", (12..15)); $code.=<<___; @@ @@ _aes_preheat @@ @@ Fills q9-q15 as specified below. @@ .type _vpaes_preheat,%function .align 4 _vpaes_preheat: adr r10, .Lk_inv vmov.i8 q9, #0x0f @ .Lk_s0F vld1.64 {q10,q11}, [r10]! @ .Lk_inv add r10, r10, #64 @ Skip .Lk_ipt, .Lk_sbo vld1.64 {q12,q13}, [r10]! @ .Lk_sb1 vld1.64 {q14,q15}, [r10] @ .Lk_sb2 bx lr @@ @@ _aes_encrypt_core @@ @@ AES-encrypt q0. @@ @@ Inputs: @@ q0 = input @@ q9-q15 as in _vpaes_preheat @@ [$key] = scheduled keys @@ @@ Output in q0 @@ Clobbers q1-q5, r8-r11 @@ Preserves q6-q8 so you get some local vectors @@ @@ .type _vpaes_encrypt_core,%function .align 4 _vpaes_encrypt_core: mov r9, $key ldr r8, [$key,#240] @ pull rounds adr r11, .Lk_ipt @ vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo @ vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi vld1.64 {q2, q3}, [r11] adr r11, .Lk_mc_forward+16 vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5 # round0 key vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 vtbl.8 q1#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm1 vtbl.8 q1#hi, {q2}, q1#hi vtbl.8 q2#lo, {q3}, q0#lo @ vpshufb %xmm0, %xmm3, %xmm2 vtbl.8 q2#hi, {q3}, q0#hi veor q0, q1, q5 @ vpxor %xmm5, %xmm1, %xmm0 veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0 @ .Lenc_entry ends with a bnz instruction which is normally paired with @ subs in .Lenc_loop. tst r8, r8 b .Lenc_entry .align 4 .Lenc_loop: @ middle of middle round add r10, r11, #0x40 vtbl.8 q4#lo, {$sb1t}, q2#lo @ vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u vtbl.8 q4#hi, {$sb1t}, q2#hi vld1.64 {q1}, [r11]! @ vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[] vtbl.8 q0#lo, {$sb1u}, q3#lo @ vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t vtbl.8 q0#hi, {$sb1u}, q3#hi veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k vtbl.8 q5#lo, {$sb2t}, q2#lo @ vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u vtbl.8 q5#hi, {$sb2t}, q2#hi veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A vtbl.8 q2#lo, {$sb2u}, q3#lo @ vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t vtbl.8 q2#hi, {$sb2u}, q3#hi vld1.64 {q4}, [r10] @ vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[] vtbl.8 q3#lo, {q0}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm3 # 0 = B vtbl.8 q3#hi, {q0}, q1#hi veor q2, q2, q5 @ vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A @ Write to q5 instead of q0, so the table and destination registers do @ not overlap. vtbl.8 q5#lo, {q0}, q4#lo @ vpshufb %xmm4, %xmm0, %xmm0 # 3 = D vtbl.8 q5#hi, {q0}, q4#hi veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B vtbl.8 q4#lo, {q3}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C vtbl.8 q4#hi, {q3}, q1#hi @ Here we restore the original q0/q5 usage. veor q0, q5, q3 @ vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D and r11, r11, #~(1<<6) @ and \$0x30, %r11 # ... mod 4 veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D subs r8, r8, #1 @ nr-- .Lenc_entry: @ top of round vand q1, q0, q9 @ vpand %xmm0, %xmm9, %xmm1 # 0 = k vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i vtbl.8 q5#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k vtbl.8 q5#hi, {$invhi}, q1#hi veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vtbl.8 q3#hi, {$invlo}, q0#hi vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vtbl.8 q4#hi, {$invlo}, q1#hi veor q3, q3, q5 @ vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vtbl.8 q2#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak vtbl.8 q2#hi, {$invlo}, q3#hi vtbl.8 q3#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak vtbl.8 q3#hi, {$invlo}, q4#hi veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5 bne .Lenc_loop @ middle of last round add r10, r11, #0x80 adr r11, .Lk_sbo @ Read to q1 instead of q4, so the vtbl.8 instruction below does not @ overlap table and destination registers. vld1.64 {q1}, [r11]! @ vmovdqa -0x60(%r10), %xmm4 # 3 : sbou vld1.64 {q0}, [r11] @ vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 vtbl.8 q4#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou vtbl.8 q4#hi, {q1}, q2#hi vld1.64 {q1}, [r10] @ vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[] @ Write to q2 instead of q0 below, to avoid overlapping table and @ destination registers. vtbl.8 q2#lo, {q0}, q3#lo @ vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t vtbl.8 q2#hi, {q0}, q3#hi veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k veor q2, q2, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A @ Here we restore the original q0/q2 usage. vtbl.8 q0#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm0 vtbl.8 q0#hi, {q2}, q1#hi bx lr .size _vpaes_encrypt_core,.-_vpaes_encrypt_core .globl vpaes_encrypt .type vpaes_encrypt,%function .align 4 vpaes_encrypt: @ _vpaes_encrypt_core uses r8-r11. Round up to r7-r11 to maintain stack @ alignment. stmdb sp!, {r7-r11,lr} @ _vpaes_encrypt_core uses q4-q5 (d8-d11), which are callee-saved. vstmdb sp!, {d8-d11} vld1.64 {q0}, [$inp] bl _vpaes_preheat bl _vpaes_encrypt_core vst1.64 {q0}, [$out] vldmia sp!, {d8-d11} ldmia sp!, {r7-r11, pc} @ return .size vpaes_encrypt,.-vpaes_encrypt @ @ Decryption stuff @ .type _vpaes_decrypt_consts,%object .align 4 _vpaes_decrypt_consts: .Lk_dipt: @ decryption input transform .quad 0x0F505B040B545F00, 0x154A411E114E451A .quad 0x86E383E660056500, 0x12771772F491F194 .Lk_dsbo: @ decryption sbox final output .quad 0x1387EA537EF94000, 0xC7AA6DB9D4943E2D .quad 0x12D7560F93441D00, 0xCA4B8159D8C58E9C .Lk_dsb9: @ decryption sbox output *9*u, *9*t .quad 0x851C03539A86D600, 0xCAD51F504F994CC9 .quad 0xC03B1789ECD74900, 0x725E2C9EB2FBA565 .Lk_dsbd: @ decryption sbox output *D*u, *D*t .quad 0x7D57CCDFE6B1A200, 0xF56E9B13882A4439 .quad 0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3 .Lk_dsbb: @ decryption sbox output *B*u, *B*t .quad 0xD022649296B44200, 0x602646F6B0F2D404 .quad 0xC19498A6CD596700, 0xF3FF0C3E3255AA6B .Lk_dsbe: @ decryption sbox output *E*u, *E*t .quad 0x46F2929626D4D000, 0x2242600464B4F6B0 .quad 0x0C55A6CDFFAAC100, 0x9467F36B98593E32 .size _vpaes_decrypt_consts,.-_vpaes_decrypt_consts @@ @@ Decryption core @@ @@ Same API as encryption core, except it clobbers q12-q15 rather than using @@ the values from _vpaes_preheat. q9-q11 must still be set from @@ _vpaes_preheat. @@ .type _vpaes_decrypt_core,%function .align 4 _vpaes_decrypt_core: mov r9, $key ldr r8, [$key,#240] @ pull rounds @ This function performs shuffles with various constants. The x86_64 @ version loads them on-demand into %xmm0-%xmm5. This does not work well @ for ARMv7 because those registers are shuffle destinations. The ARMv8 @ version preloads those constants into registers, but ARMv7 has half @ the registers to work with. Instead, we load them on-demand into @ q12-q15, registers normally use for preloaded constants. This is fine @ because decryption doesn't use those constants. The values are @ constant, so this does not interfere with potential 2x optimizations. adr r7, .Lk_dipt vld1.64 {q12,q13}, [r7] @ vmovdqa .Lk_dipt(%rip), %xmm2 # iptlo lsl r11, r8, #4 @ mov %rax, %r11; shl \$4, %r11 eor r11, r11, #0x30 @ xor \$0x30, %r11 adr r10, .Lk_sr and r11, r11, #0x30 @ and \$0x30, %r11 add r11, r11, r10 adr r10, .Lk_mc_forward+48 vld1.64 {q4}, [r9]! @ vmovdqu (%r9), %xmm4 # round0 key vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 vtbl.8 q2#lo, {q12}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm2 vtbl.8 q2#hi, {q12}, q1#hi vld1.64 {q5}, [r10] @ vmovdqa .Lk_mc_forward+48(%rip), %xmm5 @ vmovdqa .Lk_dipt+16(%rip), %xmm1 # ipthi vtbl.8 q0#lo, {q13}, q0#lo @ vpshufb %xmm0, %xmm1, %xmm0 vtbl.8 q0#hi, {q13}, q0#hi veor q2, q2, q4 @ vpxor %xmm4, %xmm2, %xmm2 veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0 @ .Ldec_entry ends with a bnz instruction which is normally paired with @ subs in .Ldec_loop. tst r8, r8 b .Ldec_entry .align 4 .Ldec_loop: @ @ Inverse mix columns @ @ We load .Lk_dsb* into q12-q15 on-demand. See the comment at the top of @ the function. adr r10, .Lk_dsb9 vld1.64 {q12,q13}, [r10]! @ vmovdqa -0x20(%r10),%xmm4 # 4 : sb9u @ vmovdqa -0x10(%r10),%xmm1 # 0 : sb9t @ Load sbd* ahead of time. vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x00(%r10),%xmm4 # 4 : sbdu @ vmovdqa 0x10(%r10),%xmm1 # 0 : sbdt vtbl.8 q4#lo, {q12}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sb9u vtbl.8 q4#hi, {q12}, q2#hi vtbl.8 q1#lo, {q13}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb9t vtbl.8 q1#hi, {q13}, q3#hi veor q0, q4, q0 @ vpxor %xmm4, %xmm0, %xmm0 veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch @ Load sbb* ahead of time. vld1.64 {q12,q13}, [r10]! @ vmovdqa 0x20(%r10),%xmm4 # 4 : sbbu @ vmovdqa 0x30(%r10),%xmm1 # 0 : sbbt vtbl.8 q4#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbdu vtbl.8 q4#hi, {q14}, q2#hi @ Write to q1 instead of q0, so the table and destination registers do @ not overlap. vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch vtbl.8 q1#hi, {q0}, q5#hi @ Here we restore the original q0/q1 usage. This instruction is @ reordered from the ARMv8 version so we do not clobber the vtbl.8 @ below. veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch vtbl.8 q1#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbdt vtbl.8 q1#hi, {q15}, q3#hi @ vmovdqa 0x20(%r10), %xmm4 # 4 : sbbu veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch @ vmovdqa 0x30(%r10), %xmm1 # 0 : sbbt @ Load sbd* ahead of time. vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x40(%r10),%xmm4 # 4 : sbeu @ vmovdqa 0x50(%r10),%xmm1 # 0 : sbet vtbl.8 q4#lo, {q12}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbbu vtbl.8 q4#hi, {q12}, q2#hi @ Write to q1 instead of q0, so the table and destination registers do @ not overlap. vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch vtbl.8 q1#hi, {q0}, q5#hi @ Here we restore the original q0/q1 usage. This instruction is @ reordered from the ARMv8 version so we do not clobber the vtbl.8 @ below. veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch vtbl.8 q1#lo, {q13}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbbt vtbl.8 q1#hi, {q13}, q3#hi veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch vtbl.8 q4#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbeu vtbl.8 q4#hi, {q14}, q2#hi @ Write to q1 instead of q0, so the table and destination registers do @ not overlap. vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch vtbl.8 q1#hi, {q0}, q5#hi @ Here we restore the original q0/q1 usage. This instruction is @ reordered from the ARMv8 version so we do not clobber the vtbl.8 @ below. veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch vtbl.8 q1#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbet vtbl.8 q1#hi, {q15}, q3#hi vext.8 q5, q5, q5, #12 @ vpalignr \$12, %xmm5, %xmm5, %xmm5 veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch subs r8, r8, #1 @ sub \$1,%rax # nr-- .Ldec_entry: @ top of round vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 # 0 = k vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i vtbl.8 q2#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k vtbl.8 q2#hi, {$invhi}, q1#hi veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vtbl.8 q3#hi, {$invlo}, q0#hi vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vtbl.8 q4#hi, {$invlo}, q1#hi veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vtbl.8 q2#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak vtbl.8 q2#hi, {$invlo}, q3#hi vtbl.8 q3#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak vtbl.8 q3#hi, {$invlo}, q4#hi veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo vld1.64 {q0}, [r9]! @ vmovdqu (%r9), %xmm0 bne .Ldec_loop @ middle of last round adr r10, .Lk_dsbo @ Write to q1 rather than q4 to avoid overlapping table and destination. vld1.64 {q1}, [r10]! @ vmovdqa 0x60(%r10), %xmm4 # 3 : sbou vtbl.8 q4#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou vtbl.8 q4#hi, {q1}, q2#hi @ Write to q2 rather than q1 to avoid overlapping table and destination. vld1.64 {q2}, [r10] @ vmovdqa 0x70(%r10), %xmm1 # 0 : sbot vtbl.8 q1#lo, {q2}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb1t vtbl.8 q1#hi, {q2}, q3#hi vld1.64 {q2}, [r11] @ vmovdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160 veor q4, q4, q0 @ vpxor %xmm0, %xmm4, %xmm4 # 4 = sb1u + k @ Write to q1 rather than q0 so the table and destination registers @ below do not overlap. veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm0 # 0 = A vtbl.8 q0#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm0, %xmm0 vtbl.8 q0#hi, {q1}, q2#hi bx lr .size _vpaes_decrypt_core,.-_vpaes_decrypt_core .globl vpaes_decrypt .type vpaes_decrypt,%function .align 4 vpaes_decrypt: @ _vpaes_decrypt_core uses r7-r11. stmdb sp!, {r7-r11,lr} @ _vpaes_decrypt_core uses q4-q5 (d8-d11), which are callee-saved. vstmdb sp!, {d8-d11} vld1.64 {q0}, [$inp] bl _vpaes_preheat bl _vpaes_decrypt_core vst1.64 {q0}, [$out] vldmia sp!, {d8-d11} ldmia sp!, {r7-r11, pc} @ return .size vpaes_decrypt,.-vpaes_decrypt ___ } { my ($inp,$bits,$out,$dir)=("r0","r1","r2","r3"); my ($rcon,$s0F,$invlo,$invhi,$s63) = map("q$_",(8..12)); $code.=<<___; @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@ @@ @@ AES key schedule @@ @@ @@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ This function diverges from both x86_64 and armv7 in which constants are @ pinned. x86_64 has a common preheat function for all operations. aarch64 @ separates them because it has enough registers to pin nearly all constants. @ armv7 does not have enough registers, but needing explicit loads and stores @ also complicates using x86_64's register allocation directly. @ @ We pin some constants for convenience and leave q14 and q15 free to load @ others on demand. @ @ Key schedule constants @ .type _vpaes_key_consts,%object .align 4 _vpaes_key_consts: .Lk_dksd: @ decryption key schedule: invskew x*D .quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9 .quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E .Lk_dksb: @ decryption key schedule: invskew x*B .quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99 .quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8 .Lk_dkse: @ decryption key schedule: invskew x*E + 0x63 .quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086 .quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487 .Lk_dks9: @ decryption key schedule: invskew x*9 .quad 0xB6116FC87ED9A700, 0x4AED933482255BFC .quad 0x4576516227143300, 0x8BB89FACE9DAFDCE .Lk_rcon: @ rcon .quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81 .Lk_opt: @ output transform .quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808 .quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0 .Lk_deskew: @ deskew tables: inverts the sbox's "skew" .quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A .quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77 .size _vpaes_key_consts,.-_vpaes_key_consts .type _vpaes_key_preheat,%function .align 4 _vpaes_key_preheat: adr r11, .Lk_rcon vmov.i8 $s63, #0x5b @ .Lk_s63 adr r10, .Lk_inv @ Must be aligned to 8 mod 16. vmov.i8 $s0F, #0x0f @ .Lk_s0F vld1.64 {$invlo,$invhi}, [r10] @ .Lk_inv vld1.64 {$rcon}, [r11] @ .Lk_rcon bx lr .size _vpaes_key_preheat,.-_vpaes_key_preheat .type _vpaes_schedule_core,%function .align 4 _vpaes_schedule_core: @ We only need to save lr, but ARM requires an 8-byte stack alignment, @ so save an extra register. stmdb sp!, {r3,lr} bl _vpaes_key_preheat @ load the tables adr r11, .Lk_ipt @ Must be aligned to 8 mod 16. vld1.64 {q0}, [$inp]! @ vmovdqu (%rdi), %xmm0 # load key (unaligned) @ input transform @ Use q4 here rather than q3 so .Lschedule_am_decrypting does not @ overlap table and destination. vmov q4, q0 @ vmovdqa %xmm0, %xmm3 bl _vpaes_schedule_transform adr r10, .Lk_sr @ Must be aligned to 8 mod 16. vmov q7, q0 @ vmovdqa %xmm0, %xmm7 add r8, r8, r10 tst $dir, $dir bne .Lschedule_am_decrypting @ encrypting, output zeroth round key after transform vst1.64 {q0}, [$out] @ vmovdqu %xmm0, (%rdx) b .Lschedule_go .Lschedule_am_decrypting: @ decrypting, output zeroth round key after shiftrows vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1 vtbl.8 q3#lo, {q4}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3 vtbl.8 q3#hi, {q4}, q1#hi vst1.64 {q3}, [$out] @ vmovdqu %xmm3, (%rdx) eor r8, r8, #0x30 @ xor \$0x30, %r8 .Lschedule_go: cmp $bits, #192 @ cmp \$192, %esi bhi .Lschedule_256 beq .Lschedule_192 @ 128: fall though @@ @@ .schedule_128 @@ @@ 128-bit specific part of key schedule. @@ @@ This schedule is really simple, because all its parts @@ are accomplished by the subroutines. @@ .Lschedule_128: mov $inp, #10 @ mov \$10, %esi .Loop_schedule_128: bl _vpaes_schedule_round subs $inp, $inp, #1 @ dec %esi beq .Lschedule_mangle_last bl _vpaes_schedule_mangle @ write output b .Loop_schedule_128 @@ @@ .aes_schedule_192 @@ @@ 192-bit specific part of key schedule. @@ @@ The main body of this schedule is the same as the 128-bit @@ schedule, but with more smearing. The long, high side is @@ stored in q7 as before, and the short, low side is in @@ the high bits of q6. @@ @@ This schedule is somewhat nastier, however, because each @@ round produces 192 bits of key material, or 1.5 round keys. @@ Therefore, on each cycle we do 2 rounds and produce 3 round @@ keys. @@ .align 4 .Lschedule_192: sub $inp, $inp, #8 vld1.64 {q0}, [$inp] @ vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned) bl _vpaes_schedule_transform @ input transform vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save short part vmov.i8 q6#lo, #0 @ vpxor %xmm4, %xmm4, %xmm4 # clear 4 @ vmovhlps %xmm4, %xmm6, %xmm6 # clobber low side with zeros mov $inp, #4 @ mov \$4, %esi .Loop_schedule_192: bl _vpaes_schedule_round vext.8 q0, q6, q0, #8 @ vpalignr \$8,%xmm6,%xmm0,%xmm0 bl _vpaes_schedule_mangle @ save key n bl _vpaes_schedule_192_smear bl _vpaes_schedule_mangle @ save key n+1 bl _vpaes_schedule_round subs $inp, $inp, #1 @ dec %esi beq .Lschedule_mangle_last bl _vpaes_schedule_mangle @ save key n+2 bl _vpaes_schedule_192_smear b .Loop_schedule_192 @@ @@ .aes_schedule_256 @@ @@ 256-bit specific part of key schedule. @@ @@ The structure here is very similar to the 128-bit @@ schedule, but with an additional "low side" in @@ q6. The low side's rounds are the same as the @@ high side's, except no rcon and no rotation. @@ .align 4 .Lschedule_256: vld1.64 {q0}, [$inp] @ vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned) bl _vpaes_schedule_transform @ input transform mov $inp, #7 @ mov \$7, %esi .Loop_schedule_256: bl _vpaes_schedule_mangle @ output low result vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6 @ high round bl _vpaes_schedule_round subs $inp, $inp, #1 @ dec %esi beq .Lschedule_mangle_last bl _vpaes_schedule_mangle @ low round. swap xmm7 and xmm6 vdup.32 q0, q0#hi[1] @ vpshufd \$0xFF, %xmm0, %xmm0 vmov.i8 q4, #0 vmov q5, q7 @ vmovdqa %xmm7, %xmm5 vmov q7, q6 @ vmovdqa %xmm6, %xmm7 bl _vpaes_schedule_low_round vmov q7, q5 @ vmovdqa %xmm5, %xmm7 b .Loop_schedule_256 @@ @@ .aes_schedule_mangle_last @@ @@ Mangler for last round of key schedule @@ Mangles q0 @@ when encrypting, outputs out(q0) ^ 63 @@ when decrypting, outputs unskew(q0) @@ @@ Always called right before return... jumps to cleanup and exits @@ .align 4 .Lschedule_mangle_last: @ schedule last round key from xmm0 adr r11, .Lk_deskew @ lea .Lk_deskew(%rip),%r11 # prepare to deskew tst $dir, $dir bne .Lschedule_mangle_last_dec @ encrypting vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10),%xmm1 adr r11, .Lk_opt @ lea .Lk_opt(%rip), %r11 # prepare to output transform add $out, $out, #32 @ add \$32, %rdx vmov q2, q0 vtbl.8 q0#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm0 # output permute vtbl.8 q0#hi, {q2}, q1#hi .Lschedule_mangle_last_dec: sub $out, $out, #16 @ add \$-16, %rdx veor q0, q0, $s63 @ vpxor .Lk_s63(%rip), %xmm0, %xmm0 bl _vpaes_schedule_transform @ output transform vst1.64 {q0}, [$out] @ vmovdqu %xmm0, (%rdx) # save last key @ cleanup veor q0, q0, q0 @ vpxor %xmm0, %xmm0, %xmm0 veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1 veor q2, q2, q2 @ vpxor %xmm2, %xmm2, %xmm2 veor q3, q3, q3 @ vpxor %xmm3, %xmm3, %xmm3 veor q4, q4, q4 @ vpxor %xmm4, %xmm4, %xmm4 veor q5, q5, q5 @ vpxor %xmm5, %xmm5, %xmm5 veor q6, q6, q6 @ vpxor %xmm6, %xmm6, %xmm6 veor q7, q7, q7 @ vpxor %xmm7, %xmm7, %xmm7 ldmia sp!, {r3,pc} @ return .size _vpaes_schedule_core,.-_vpaes_schedule_core @@ @@ .aes_schedule_192_smear @@ @@ Smear the short, low side in the 192-bit key schedule. @@ @@ Inputs: @@ q7: high side, b a x y @@ q6: low side, d c 0 0 @@ @@ Outputs: @@ q6: b+c+d b+c 0 0 @@ q0: b+c+d b+c b a @@ .type _vpaes_schedule_192_smear,%function .align 4 _vpaes_schedule_192_smear: vmov.i8 q1, #0 vdup.32 q0, q7#hi[1] vshl.i64 q1, q6, #32 @ vpshufd \$0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0 vmov q0#lo, q7#hi @ vpshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a veor q6, q6, q1 @ vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0 veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1 veor q6, q6, q0 @ vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a vmov q0, q6 @ vmovdqa %xmm6, %xmm0 vmov q6#lo, q1#lo @ vmovhlps %xmm1, %xmm6, %xmm6 # clobber low side with zeros bx lr .size _vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear @@ @@ .aes_schedule_round @@ @@ Runs one main round of the key schedule on q0, q7 @@ @@ Specifically, runs subbytes on the high dword of q0 @@ then rotates it by one byte and xors into the low dword of @@ q7. @@ @@ Adds rcon from low byte of q8, then rotates q8 for @@ next rcon. @@ @@ Smears the dwords of q7 by xoring the low into the @@ second low, result into third, result into highest. @@ @@ Returns results in q7 = q0. @@ Clobbers q1-q4, r11. @@ .type _vpaes_schedule_round,%function .align 4 _vpaes_schedule_round: @ extract rcon from xmm8 vmov.i8 q4, #0 @ vpxor %xmm4, %xmm4, %xmm4 vext.8 q1, $rcon, q4, #15 @ vpalignr \$15, %xmm8, %xmm4, %xmm1 vext.8 $rcon, $rcon, $rcon, #15 @ vpalignr \$15, %xmm8, %xmm8, %xmm8 veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7 @ rotate vdup.32 q0, q0#hi[1] @ vpshufd \$0xFF, %xmm0, %xmm0 vext.8 q0, q0, q0, #1 @ vpalignr \$1, %xmm0, %xmm0, %xmm0 @ fall through... @ low round: same as high round, but no rotation and no rcon. _vpaes_schedule_low_round: @ The x86_64 version pins .Lk_sb1 in %xmm13 and .Lk_sb1+16 in %xmm12. @ We pin other values in _vpaes_key_preheat, so load them now. adr r11, .Lk_sb1 vld1.64 {q14,q15}, [r11] @ smear xmm7 vext.8 q1, q4, q7, #12 @ vpslldq \$4, %xmm7, %xmm1 veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7 vext.8 q4, q4, q7, #8 @ vpslldq \$8, %xmm7, %xmm4 @ subbytes vand q1, q0, $s0F @ vpand %xmm9, %xmm0, %xmm1 # 0 = k vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i veor q7, q7, q4 @ vpxor %xmm4, %xmm7, %xmm7 vtbl.8 q2#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k vtbl.8 q2#hi, {$invhi}, q1#hi veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vtbl.8 q3#hi, {$invlo}, q0#hi veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vtbl.8 q4#hi, {$invlo}, q1#hi veor q7, q7, $s63 @ vpxor .Lk_s63(%rip), %xmm7, %xmm7 vtbl.8 q3#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak vtbl.8 q3#hi, {$invlo}, q3#hi veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vtbl.8 q2#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak vtbl.8 q2#hi, {$invlo}, q4#hi veor q3, q3, q1 @ vpxor %xmm1, %xmm3, %xmm3 # 2 = io veor q2, q2, q0 @ vpxor %xmm0, %xmm2, %xmm2 # 3 = jo vtbl.8 q4#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou vtbl.8 q4#hi, {q15}, q3#hi vtbl.8 q1#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t vtbl.8 q1#hi, {q14}, q2#hi veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output @ add in smeared stuff veor q0, q1, q7 @ vpxor %xmm7, %xmm1, %xmm0 veor q7, q1, q7 @ vmovdqa %xmm0, %xmm7 bx lr .size _vpaes_schedule_round,.-_vpaes_schedule_round @@ @@ .aes_schedule_transform @@ @@ Linear-transform q0 according to tables at [r11] @@ @@ Requires that q9 = 0x0F0F... as in preheat @@ Output in q0 @@ Clobbers q1, q2, q14, q15 @@ .type _vpaes_schedule_transform,%function .align 4 _vpaes_schedule_transform: vld1.64 {q14,q15}, [r11] @ vmovdqa (%r11), %xmm2 # lo @ vmovdqa 16(%r11), %xmm1 # hi vand q1, q0, $s0F @ vpand %xmm9, %xmm0, %xmm1 vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 vtbl.8 q2#lo, {q14}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm2 vtbl.8 q2#hi, {q14}, q1#hi vtbl.8 q0#lo, {q15}, q0#lo @ vpshufb %xmm0, %xmm1, %xmm0 vtbl.8 q0#hi, {q15}, q0#hi veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0 bx lr .size _vpaes_schedule_transform,.-_vpaes_schedule_transform @@ @@ .aes_schedule_mangle @@ @@ Mangles q0 from (basis-transformed) standard version @@ to our version. @@ @@ On encrypt, @@ xor with 0x63 @@ multiply by circulant 0,1,1,1 @@ apply shiftrows transform @@ @@ On decrypt, @@ xor with 0x63 @@ multiply by "inverse mixcolumns" circulant E,B,D,9 @@ deskew @@ apply shiftrows transform @@ @@ @@ Writes out to [r2], and increments or decrements it @@ Keeps track of round number mod 4 in r8 @@ Preserves q0 @@ Clobbers q1-q5 @@ .type _vpaes_schedule_mangle,%function .align 4 _vpaes_schedule_mangle: tst $dir, $dir vmov q4, q0 @ vmovdqa %xmm0, %xmm4 # save xmm0 for later adr r11, .Lk_mc_forward @ Must be aligned to 8 mod 16. vld1.64 {q5}, [r11] @ vmovdqa .Lk_mc_forward(%rip),%xmm5 bne .Lschedule_mangle_dec @ encrypting @ Write to q2 so we do not overlap table and destination below. veor q2, q0, $s63 @ vpxor .Lk_s63(%rip), %xmm0, %xmm4 add $out, $out, #16 @ add \$16, %rdx vtbl.8 q4#lo, {q2}, q5#lo @ vpshufb %xmm5, %xmm4, %xmm4 vtbl.8 q4#hi, {q2}, q5#hi vtbl.8 q1#lo, {q4}, q5#lo @ vpshufb %xmm5, %xmm4, %xmm1 vtbl.8 q1#hi, {q4}, q5#hi vtbl.8 q3#lo, {q1}, q5#lo @ vpshufb %xmm5, %xmm1, %xmm3 vtbl.8 q3#hi, {q1}, q5#hi veor q4, q4, q1 @ vpxor %xmm1, %xmm4, %xmm4 vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1 veor q3, q3, q4 @ vpxor %xmm4, %xmm3, %xmm3 b .Lschedule_mangle_both .align 4 .Lschedule_mangle_dec: @ inverse mix columns adr r11, .Lk_dksd @ lea .Lk_dksd(%rip),%r11 vshr.u8 q1, q4, #4 @ vpsrlb \$4, %xmm4, %xmm1 # 1 = hi vand q4, q4, $s0F @ vpand %xmm9, %xmm4, %xmm4 # 4 = lo vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x00(%r11), %xmm2 @ vmovdqa 0x10(%r11), %xmm3 vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2 vtbl.8 q2#hi, {q14}, q4#hi vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3 vtbl.8 q3#hi, {q15}, q1#hi @ Load .Lk_dksb ahead of time. vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x20(%r11), %xmm2 @ vmovdqa 0x30(%r11), %xmm3 @ Write to q13 so we do not overlap table and destination. veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3 vtbl.8 q3#hi, {q13}, q5#hi vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2 vtbl.8 q2#hi, {q14}, q4#hi veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2 vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3 vtbl.8 q3#hi, {q15}, q1#hi @ Load .Lk_dkse ahead of time. vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x40(%r11), %xmm2 @ vmovdqa 0x50(%r11), %xmm3 @ Write to q13 so we do not overlap table and destination. veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3 vtbl.8 q3#hi, {q13}, q5#hi vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2 vtbl.8 q2#hi, {q14}, q4#hi veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2 vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3 vtbl.8 q3#hi, {q15}, q1#hi @ Load .Lk_dkse ahead of time. vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x60(%r11), %xmm2 @ vmovdqa 0x70(%r11), %xmm4 @ Write to q13 so we do not overlap table and destination. veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2 vtbl.8 q2#hi, {q14}, q4#hi vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3 vtbl.8 q3#hi, {q13}, q5#hi vtbl.8 q4#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm4, %xmm4 vtbl.8 q4#hi, {q15}, q1#hi vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1 veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2 veor q3, q4, q2 @ vpxor %xmm2, %xmm4, %xmm3 sub $out, $out, #16 @ add \$-16, %rdx .Lschedule_mangle_both: @ Write to q2 so table and destination do not overlap. vtbl.8 q2#lo, {q3}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3 vtbl.8 q2#hi, {q3}, q1#hi add r8, r8, #64-16 @ add \$-16, %r8 and r8, r8, #~(1<<6) @ and \$0x30, %r8 vst1.64 {q2}, [$out] @ vmovdqu %xmm3, (%rdx) bx lr .size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle .globl vpaes_set_encrypt_key .type vpaes_set_encrypt_key,%function .align 4 vpaes_set_encrypt_key: stmdb sp!, {r7-r11, lr} vstmdb sp!, {d8-d15} lsr r9, $bits, #5 @ shr \$5,%eax add r9, r9, #5 @ \$5,%eax str r9, [$out,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; mov $dir, #0 @ mov \$0,%ecx mov r8, #0x30 @ mov \$0x30,%r8d bl _vpaes_schedule_core eor r0, r0, r0 vldmia sp!, {d8-d15} ldmia sp!, {r7-r11, pc} @ return .size vpaes_set_encrypt_key,.-vpaes_set_encrypt_key .globl vpaes_set_decrypt_key .type vpaes_set_decrypt_key,%function .align 4 vpaes_set_decrypt_key: stmdb sp!, {r7-r11, lr} vstmdb sp!, {d8-d15} lsr r9, $bits, #5 @ shr \$5,%eax add r9, r9, #5 @ \$5,%eax str r9, [$out,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; lsl r9, r9, #4 @ shl \$4,%eax add $out, $out, #16 @ lea 16(%rdx,%rax),%rdx add $out, $out, r9 mov $dir, #1 @ mov \$1,%ecx lsr r8, $bits, #1 @ shr \$1,%r8d and r8, r8, #32 @ and \$32,%r8d eor r8, r8, #32 @ xor \$32,%r8d # nbits==192?0:32 bl _vpaes_schedule_core vldmia sp!, {d8-d15} ldmia sp!, {r7-r11, pc} @ return .size vpaes_set_decrypt_key,.-vpaes_set_decrypt_key ___ } { my ($out, $inp) = map("r$_", (0..1)); my ($s0F, $s63, $s63_raw, $mc_forward) = map("q$_", (9..12)); $code .= <<___; @ Additional constants for converting to bsaes. .type _vpaes_convert_consts,%object .align 4 _vpaes_convert_consts: @ .Lk_opt_then_skew applies skew(opt(x)) XOR 0x63, where skew is the linear @ transform in the AES S-box. 0x63 is incorporated into the low half of the @ table. This was computed with the following script: @ @ def u64s_to_u128(x, y): @ return x | (y << 64) @ def u128_to_u64s(w): @ return w & ((1<<64)-1), w >> 64 @ def get_byte(w, i): @ return (w >> (i*8)) & 0xff @ def apply_table(table, b): @ lo = b & 0xf @ hi = b >> 4 @ return get_byte(table[0], lo) ^ get_byte(table[1], hi) @ def opt(b): @ table = [ @ u64s_to_u128(0xFF9F4929D6B66000, 0xF7974121DEBE6808), @ u64s_to_u128(0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0), @ ] @ return apply_table(table, b) @ def rot_byte(b, n): @ return 0xff & ((b << n) | (b >> (8-n))) @ def skew(x): @ return (x ^ rot_byte(x, 1) ^ rot_byte(x, 2) ^ rot_byte(x, 3) ^ @ rot_byte(x, 4)) @ table = [0, 0] @ for i in range(16): @ table[0] |= (skew(opt(i)) ^ 0x63) << (i*8) @ table[1] |= skew(opt(i<<4)) << (i*8) @ print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[0])) @ print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[1])) .Lk_opt_then_skew: .quad 0x9cb8436798bc4763, 0x6440bb9f6044bf9b .quad 0x1f30062936192f00, 0xb49bad829db284ab @ .Lk_decrypt_transform is a permutation which performs an 8-bit left-rotation @ followed by a byte-swap on each 32-bit word of a vector. E.g., 0x11223344 @ becomes 0x22334411 and then 0x11443322. .Lk_decrypt_transform: .quad 0x0704050603000102, 0x0f0c0d0e0b08090a .size _vpaes_convert_consts,.-_vpaes_convert_consts @ void vpaes_encrypt_key_to_bsaes(AES_KEY *bsaes, const AES_KEY *vpaes); .globl vpaes_encrypt_key_to_bsaes .type vpaes_encrypt_key_to_bsaes,%function .align 4 vpaes_encrypt_key_to_bsaes: stmdb sp!, {r11, lr} @ See _vpaes_schedule_core for the key schedule logic. In particular, @ _vpaes_schedule_transform(.Lk_ipt) (section 2.2 of the paper), @ _vpaes_schedule_mangle (section 4.3), and .Lschedule_mangle_last @ contain the transformations not in the bsaes representation. This @ function inverts those transforms. @ @ Note also that bsaes-armv7.pl expects aes-armv4.pl's key @ representation, which does not match the other aes_nohw_* @ implementations. The ARM aes_nohw_* stores each 32-bit word @ byteswapped, as a convenience for (unsupported) big-endian ARM, at the @ cost of extra REV and VREV32 operations in little-endian ARM. vmov.i8 $s0F, #0x0f @ Required by _vpaes_schedule_transform adr r2, .Lk_mc_forward @ Must be aligned to 8 mod 16. add r3, r2, 0x90 @ .Lk_sr+0x10-.Lk_mc_forward = 0x90 (Apple's toolchain doesn't support the expression) vld1.64 {$mc_forward}, [r2] vmov.i8 $s63, #0x5b @ .Lk_s63 from vpaes-x86_64 adr r11, .Lk_opt @ Must be aligned to 8 mod 16. vmov.i8 $s63_raw, #0x63 @ .LK_s63 without .Lk_ipt applied @ vpaes stores one fewer round count than bsaes, but the number of keys @ is the same. ldr r2, [$inp,#240] add r2, r2, #1 str r2, [$out,#240] @ The first key is transformed with _vpaes_schedule_transform(.Lk_ipt). @ Invert this with .Lk_opt. vld1.64 {q0}, [$inp]! bl _vpaes_schedule_transform vrev32.8 q0, q0 vst1.64 {q0}, [$out]! @ The middle keys have _vpaes_schedule_transform(.Lk_ipt) applied, @ followed by _vpaes_schedule_mangle. _vpaes_schedule_mangle XORs 0x63, @ multiplies by the circulant 0,1,1,1, then applies ShiftRows. .Loop_enc_key_to_bsaes: vld1.64 {q0}, [$inp]! @ Invert the ShiftRows step (see .Lschedule_mangle_both). Note we cycle @ r3 in the opposite direction and start at .Lk_sr+0x10 instead of 0x30. @ We use r3 rather than r8 to avoid a callee-saved register. vld1.64 {q1}, [r3] vtbl.8 q2#lo, {q0}, q1#lo vtbl.8 q2#hi, {q0}, q1#hi add r3, r3, #16 and r3, r3, #~(1<<6) vmov q0, q2 @ Handle the last key differently. subs r2, r2, #1 beq .Loop_enc_key_to_bsaes_last @ Multiply by the circulant. This is its own inverse. vtbl.8 q1#lo, {q0}, $mc_forward#lo vtbl.8 q1#hi, {q0}, $mc_forward#hi vmov q0, q1 vtbl.8 q2#lo, {q1}, $mc_forward#lo vtbl.8 q2#hi, {q1}, $mc_forward#hi veor q0, q0, q2 vtbl.8 q1#lo, {q2}, $mc_forward#lo vtbl.8 q1#hi, {q2}, $mc_forward#hi veor q0, q0, q1 @ XOR and finish. veor q0, q0, $s63 bl _vpaes_schedule_transform vrev32.8 q0, q0 vst1.64 {q0}, [$out]! b .Loop_enc_key_to_bsaes .Loop_enc_key_to_bsaes_last: @ The final key does not have a basis transform (note @ .Lschedule_mangle_last inverts the original transform). It only XORs @ 0x63 and applies ShiftRows. The latter was already inverted in the @ loop. Note that, because we act on the original representation, we use @ $s63_raw, not $s63. veor q0, q0, $s63_raw vrev32.8 q0, q0 vst1.64 {q0}, [$out] @ Wipe registers which contained key material. veor q0, q0, q0 veor q1, q1, q1 veor q2, q2, q2 ldmia sp!, {r11, pc} @ return .size vpaes_encrypt_key_to_bsaes,.-vpaes_encrypt_key_to_bsaes @ void vpaes_decrypt_key_to_bsaes(AES_KEY *vpaes, const AES_KEY *bsaes); .globl vpaes_decrypt_key_to_bsaes .type vpaes_decrypt_key_to_bsaes,%function .align 4 vpaes_decrypt_key_to_bsaes: stmdb sp!, {r11, lr} @ See _vpaes_schedule_core for the key schedule logic. Note vpaes @ computes the decryption key schedule in reverse. Additionally, @ aes-x86_64.pl shares some transformations, so we must only partially @ invert vpaes's transformations. In general, vpaes computes in a @ different basis (.Lk_ipt and .Lk_opt) and applies the inverses of @ MixColumns, ShiftRows, and the affine part of the AES S-box (which is @ split into a linear skew and XOR of 0x63). We undo all but MixColumns. @ @ Note also that bsaes-armv7.pl expects aes-armv4.pl's key @ representation, which does not match the other aes_nohw_* @ implementations. The ARM aes_nohw_* stores each 32-bit word @ byteswapped, as a convenience for (unsupported) big-endian ARM, at the @ cost of extra REV and VREV32 operations in little-endian ARM. adr r2, .Lk_decrypt_transform adr r3, .Lk_sr+0x30 adr r11, .Lk_opt_then_skew @ Input to _vpaes_schedule_transform. vld1.64 {$mc_forward}, [r2] @ Reuse $mc_forward from encryption. vmov.i8 $s0F, #0x0f @ Required by _vpaes_schedule_transform @ vpaes stores one fewer round count than bsaes, but the number of keys @ is the same. ldr r2, [$inp,#240] add r2, r2, #1 str r2, [$out,#240] @ Undo the basis change and reapply the S-box affine transform. See @ .Lschedule_mangle_last. vld1.64 {q0}, [$inp]! bl _vpaes_schedule_transform vrev32.8 q0, q0 vst1.64 {q0}, [$out]! @ See _vpaes_schedule_mangle for the transform on the middle keys. Note @ it simultaneously inverts MixColumns and the S-box affine transform. @ See .Lk_dksd through .Lk_dks9. .Loop_dec_key_to_bsaes: vld1.64 {q0}, [$inp]! @ Invert the ShiftRows step (see .Lschedule_mangle_both). Note going @ forwards cancels inverting for which direction we cycle r3. We use r3 @ rather than r8 to avoid a callee-saved register. vld1.64 {q1}, [r3] vtbl.8 q2#lo, {q0}, q1#lo vtbl.8 q2#hi, {q0}, q1#hi add r3, r3, #64-16 and r3, r3, #~(1<<6) vmov q0, q2 @ Handle the last key differently. subs r2, r2, #1 beq .Loop_dec_key_to_bsaes_last @ Undo the basis change and reapply the S-box affine transform. bl _vpaes_schedule_transform @ Rotate each word by 8 bytes (cycle the rows) and then byte-swap. We @ combine the two operations in .Lk_decrypt_transform. @ @ TODO(davidben): Where does the rotation come from? vtbl.8 q1#lo, {q0}, $mc_forward#lo vtbl.8 q1#hi, {q0}, $mc_forward#hi vst1.64 {q1}, [$out]! b .Loop_dec_key_to_bsaes .Loop_dec_key_to_bsaes_last: @ The final key only inverts ShiftRows (already done in the loop). See @ .Lschedule_am_decrypting. Its basis is not transformed. vrev32.8 q0, q0 vst1.64 {q0}, [$out]! @ Wipe registers which contained key material. veor q0, q0, q0 veor q1, q1, q1 veor q2, q2, q2 ldmia sp!, {r11, pc} @ return .size vpaes_decrypt_key_to_bsaes,.-vpaes_decrypt_key_to_bsaes ___ } { # Register-passed parameters. my ($inp, $out, $len, $key) = map("r$_", 0..3); # Temporaries. _vpaes_encrypt_core already uses r8..r11, so overlap $ivec and # $tmp. $ctr is r7 because it must be preserved across calls. my ($ctr, $ivec, $tmp) = map("r$_", 7..9); # void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, # const AES_KEY *key, const uint8_t ivec[16]); $code .= <<___; .globl vpaes_ctr32_encrypt_blocks .type vpaes_ctr32_encrypt_blocks,%function .align 4 vpaes_ctr32_encrypt_blocks: mov ip, sp stmdb sp!, {r7-r11, lr} @ This function uses q4-q7 (d8-d15), which are callee-saved. vstmdb sp!, {d8-d15} cmp $len, #0 @ $ivec is passed on the stack. ldr $ivec, [ip] beq .Lctr32_done @ _vpaes_encrypt_core expects the key in r2, so swap $len and $key. mov $tmp, $key mov $key, $len mov $len, $tmp ___ my ($len, $key) = ($key, $len); $code .= <<___; @ Load the IV and counter portion. ldr $ctr, [$ivec, #12] vld1.8 {q7}, [$ivec] bl _vpaes_preheat rev $ctr, $ctr @ The counter is big-endian. .Lctr32_loop: vmov q0, q7 vld1.8 {q6}, [$inp]! @ Load input ahead of time bl _vpaes_encrypt_core veor q0, q0, q6 @ XOR input and result vst1.8 {q0}, [$out]! subs $len, $len, #1 @ Update the counter. add $ctr, $ctr, #1 rev $tmp, $ctr vmov.32 q7#hi[1], $tmp bne .Lctr32_loop .Lctr32_done: vldmia sp!, {d8-d15} ldmia sp!, {r7-r11, pc} @ return .size vpaes_ctr32_encrypt_blocks,.-vpaes_ctr32_encrypt_blocks ___ } foreach (split("\n",$code)) { s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!";