/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include "internal.h" #include "rsaz_exp.h" #if !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_LINUX) || defined(OPENSSL_APPLE) || \ defined(OPENSSL_OPENBSD) || defined(OPENSSL_FREEBSD)) && \ defined(OPENSSL_AARCH64) #include "../../../third_party/s2n-bignum/include/s2n-bignum_aws-lc.h" #define BN_EXPONENTIATION_S2N_BIGNUM_CAPABLE 1 OPENSSL_INLINE int exponentiation_use_s2n_bignum(void) { return 1; } #else OPENSSL_INLINE int exponentiation_use_s2n_bignum(void) { return 0; } #endif static void exponentiation_s2n_bignum_copy_from_prebuf(BN_ULONG *dest, int width, const BN_ULONG *table, int rowidx, int window) { #if defined(BN_EXPONENTIATION_S2N_BIGNUM_CAPABLE) int table_height = 1 << window; if (CRYPTO_is_NEON_capable()) { if (width == 32) { bignum_copy_row_from_table_32_neon(dest, table, table_height, rowidx); } else if (width == 16) { bignum_copy_row_from_table_16_neon(dest, table, table_height, rowidx); } else if (width % 8 == 0) { bignum_copy_row_from_table_8n_neon(dest, table, table_height, width, rowidx); } else { bignum_copy_row_from_table(dest, table, table_height, width, rowidx); } } else { bignum_copy_row_from_table(dest, table, table_height, width, rowidx); } #else // Should not call this function unless s2n-bignum is supported. abort(); #endif } int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int i, bits, ret = 0; BIGNUM *v, *rr; BN_CTX_start(ctx); if (r == a || r == p) { rr = BN_CTX_get(ctx); } else { rr = r; } v = BN_CTX_get(ctx); if (rr == NULL || v == NULL) { goto err; } if (BN_copy(v, a) == NULL) { goto err; } bits = BN_num_bits(p); if (BN_is_odd(p)) { if (BN_copy(rr, a) == NULL) { goto err; } } else { if (!BN_one(rr)) { goto err; } } for (i = 1; i < bits; i++) { if (!BN_sqr(v, v, ctx)) { goto err; } if (BN_is_bit_set(p, i)) { if (!BN_mul(rr, rr, v, ctx)) { goto err; } } } if (r != rr && !BN_copy(r, rr)) { goto err; } ret = 1; err: BN_CTX_end(ctx); return ret; } typedef struct bn_recp_ctx_st { BIGNUM N; // the divisor BIGNUM Nr; // the reciprocal int num_bits; int shift; int flags; } BN_RECP_CTX; static void BN_RECP_CTX_init(BN_RECP_CTX *recp) { BN_init(&recp->N); BN_init(&recp->Nr); recp->num_bits = 0; recp->shift = 0; recp->flags = 0; } static void BN_RECP_CTX_free(BN_RECP_CTX *recp) { if (recp == NULL) { return; } BN_free(&recp->N); BN_free(&recp->Nr); } static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) { if (!BN_copy(&(recp->N), d)) { return 0; } BN_zero(&recp->Nr); recp->num_bits = BN_num_bits(d); recp->shift = 0; return 1; } // len is the expected size of the result We actually calculate with an extra // word of precision, so we can do faster division if the remainder is not // required. // r := 2^len / m static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) { int ret = -1; BIGNUM *t; BN_CTX_start(ctx); t = BN_CTX_get(ctx); if (t == NULL) { goto err; } if (!BN_set_bit(t, len)) { goto err; } if (!BN_div(r, NULL, t, m, ctx)) { goto err; } ret = len; err: BN_CTX_end(ctx); return ret; } static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, BN_RECP_CTX *recp, BN_CTX *ctx) { int i, j, ret = 0; BIGNUM *a, *b, *d, *r; BN_CTX_start(ctx); a = BN_CTX_get(ctx); b = BN_CTX_get(ctx); if (dv != NULL) { d = dv; } else { d = BN_CTX_get(ctx); } if (rem != NULL) { r = rem; } else { r = BN_CTX_get(ctx); } if (a == NULL || b == NULL || d == NULL || r == NULL) { goto err; } if (BN_ucmp(m, &recp->N) < 0) { BN_zero(d); if (!BN_copy(r, m)) { goto err; } BN_CTX_end(ctx); return 1; } // We want the remainder // Given input of ABCDEF / ab // we need multiply ABCDEF by 3 digests of the reciprocal of ab // i := max(BN_num_bits(m), 2*BN_num_bits(N)) i = BN_num_bits(m); j = recp->num_bits << 1; if (j > i) { i = j; } // Nr := round(2^i / N) if (i != recp->shift) { recp->shift = BN_reciprocal(&(recp->Nr), &(recp->N), i, ctx); // BN_reciprocal returns i, or -1 for an error } if (recp->shift == -1) { goto err; } // d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i - // BN_num_bits(N)))| // = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i - // BN_num_bits(N)))| // <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)| // = |m/N| if (!BN_rshift(a, m, recp->num_bits)) { goto err; } if (!BN_mul(b, a, &(recp->Nr), ctx)) { goto err; } if (!BN_rshift(d, b, i - recp->num_bits)) { goto err; } d->neg = 0; if (!BN_mul(b, &(recp->N), d, ctx)) { goto err; } if (!BN_usub(r, m, b)) { goto err; } r->neg = 0; j = 0; while (BN_ucmp(r, &(recp->N)) >= 0) { if (j++ > 2) { OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL); goto err; } if (!BN_usub(r, r, &(recp->N))) { goto err; } if (!BN_add_word(d, 1)) { goto err; } } r->neg = BN_is_zero(r) ? 0 : m->neg; d->neg = m->neg ^ recp->N.neg; ret = 1; err: BN_CTX_end(ctx); return ret; } static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_RECP_CTX *recp, BN_CTX *ctx) { int ret = 0; BIGNUM *a; const BIGNUM *ca; BN_CTX_start(ctx); a = BN_CTX_get(ctx); if (a == NULL) { goto err; } if (y != NULL) { if (x == y) { if (!BN_sqr(a, x, ctx)) { goto err; } } else { if (!BN_mul(a, x, y, ctx)) { goto err; } } ca = a; } else { ca = x; // Just do the mod } ret = BN_div_recp(NULL, r, ca, recp, ctx); err: BN_CTX_end(ctx); return ret; } // BN_window_bits_for_exponent_size returns sliding window size for mod_exp with // a |b| bit exponent. // // For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of // multiplications is a constant plus on average // // 2^(w-1) + (b-w)/(w+1); // // here 2^(w-1) is for precomputing the table (we actually need entries only // for windows that have the lowest bit set), and (b-w)/(w+1) is an // approximation for the expected number of w-bit windows, not counting the // first one. // // Thus we should use // // w >= 6 if b > 671 // w = 5 if 671 > b > 239 // w = 4 if 239 > b > 79 // w = 3 if 79 > b > 23 // w <= 2 if 23 > b // // (with draws in between). Very small exponents are often selected // with low Hamming weight, so we use w = 1 for b <= 23. static int BN_window_bits_for_exponent_size(size_t b) { if (b > 671) { return 6; } if (b > 239) { return 5; } if (b > 79) { return 4; } if (b > 23) { return 3; } return 1; } // TABLE_SIZE is the maximum precomputation table size for *variable* sliding // windows. This must be 2^(max_window - 1), where max_window is the largest // value returned from |BN_window_bits_for_exponent_size|. #define TABLE_SIZE 32 // TABLE_BITS_SMALL is the smallest value returned from // |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| * // |BN_SMALL_MAX_WORDS| words. #define TABLE_BITS_SMALL 5 // TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most // |BN_BITS2| * |BN_SMALL_MAX_WORDS|. #define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1)) static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int i, j, ret = 0, wstart, window; int start = 1; BIGNUM *aa; // Table of variables obtained from 'ctx' BIGNUM *val[TABLE_SIZE]; BN_RECP_CTX recp; // This function is only called on even moduli. assert(!BN_is_odd(m)); int bits = BN_num_bits(p); if (bits == 0) { return BN_one(r); } BN_RECP_CTX_init(&recp); BN_CTX_start(ctx); aa = BN_CTX_get(ctx); val[0] = BN_CTX_get(ctx); if (!aa || !val[0]) { goto err; } if (m->neg) { // ignore sign of 'm' if (!BN_copy(aa, m)) { goto err; } aa->neg = 0; if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) { goto err; } } else { if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) { goto err; } } if (!BN_nnmod(val[0], a, m, ctx)) { goto err; // 1 } if (BN_is_zero(val[0])) { BN_zero(r); ret = 1; goto err; } window = BN_window_bits_for_exponent_size(bits); if (window > 1) { if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) { goto err; // 2 } j = 1 << (window - 1); for (i = 1; i < j; i++) { if (((val[i] = BN_CTX_get(ctx)) == NULL) || !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) { goto err; } } } start = 1; // This is used to avoid multiplication etc // when there is only the value '1' in the // buffer. wstart = bits - 1; // The top bit of the window if (!BN_one(r)) { goto err; } for (;;) { int wvalue; // The 'value' of the window int wend; // The bottom bit of the window if (!BN_is_bit_set(p, wstart)) { if (!start) { if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) { goto err; } } if (wstart == 0) { break; } wstart--; continue; } // We now have wstart on a 'set' bit, we now need to work out // how bit a window to do. To do this we need to scan // forward until the last set bit before the end of the // window wvalue = 1; wend = 0; for (i = 1; i < window; i++) { if (wstart - i < 0) { break; } if (BN_is_bit_set(p, wstart - i)) { wvalue <<= (i - wend); wvalue |= 1; wend = i; } } // wend is the size of the current window j = wend + 1; // add the 'bytes above' if (!start) { for (i = 0; i < j; i++) { if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) { goto err; } } } // wvalue will be an odd number < 2^window if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) { goto err; } // move the 'window' down further wstart -= wend + 1; start = 0; if (wstart < 0) { break; } } ret = 1; err: BN_CTX_end(ctx); BN_RECP_CTX_free(&recp); return ret; } int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { if (m->neg) { OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); return 0; } if (a->neg || BN_ucmp(a, m) >= 0) { if (!BN_nnmod(r, a, m, ctx)) { return 0; } a = r; } if (BN_is_odd(m)) { return BN_mod_exp_mont(r, a, p, m, ctx, NULL); } return mod_exp_recp(r, a, p, m, ctx); } int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) { if (!BN_is_odd(m)) { OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); return 0; } if (m->neg) { OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); return 0; } // |a| is secret, but |a < m| is not. if (a->neg || constant_time_declassify_int(BN_ucmp(a, m)) >= 0) { OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); return 0; } int bits = BN_num_bits(p); if (bits == 0) { // x**0 mod 1 is still zero. if (BN_abs_is_word(m, 1)) { BN_zero(rr); return 1; } return BN_one(rr); } int ret = 0; BIGNUM *val[TABLE_SIZE]; BN_MONT_CTX *new_mont = NULL; BN_CTX_start(ctx); BIGNUM *r = BN_CTX_get(ctx); val[0] = BN_CTX_get(ctx); if (r == NULL || val[0] == NULL) { goto err; } // Allocate a montgomery context if it was not supplied by the caller. if (mont == NULL) { new_mont = BN_MONT_CTX_new_consttime(m, ctx); if (new_mont == NULL) { goto err; } mont = new_mont; } // We exponentiate by looking at sliding windows of the exponent and // precomputing powers of |a|. Windows may be shifted so they always end on a // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) // for i = 0 to 2^(window-1), all in Montgomery form. int window = BN_window_bits_for_exponent_size(bits); if (!BN_to_montgomery(val[0], a, mont, ctx)) { goto err; } if (window > 1) { BIGNUM *d = BN_CTX_get(ctx); if (d == NULL || !BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) { goto err; } for (int i = 1; i < 1 << (window - 1); i++) { val[i] = BN_CTX_get(ctx); if (val[i] == NULL || !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) { goto err; } } } // |p| is non-zero, so at least one window is non-zero. To save some // multiplications, defer initializing |r| until then. int r_is_one = 1; int wstart = bits - 1; // The top bit of the window. for (;;) { if (!BN_is_bit_set(p, wstart)) { if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) { goto err; } if (wstart == 0) { break; } wstart--; continue; } // We now have wstart on a set bit. Find the largest window we can use. int wvalue = 1; int wsize = 0; for (int i = 1; i < window && i <= wstart; i++) { if (BN_is_bit_set(p, wstart - i)) { wvalue <<= (i - wsize); wvalue |= 1; wsize = i; } } // Shift |r| to the end of the window. if (!r_is_one) { for (int i = 0; i < wsize + 1; i++) { if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) { goto err; } } } assert(wvalue & 1); assert(wvalue < (1 << window)); if (r_is_one) { if (!BN_copy(r, val[wvalue >> 1])) { goto err; } } else if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) { goto err; } r_is_one = 0; if (wstart == wsize) { break; } wstart -= wsize + 1; } // |p| is non-zero, so |r_is_one| must be cleared at some point. assert(!r_is_one); if (!BN_from_montgomery(rr, r, mont, ctx)) { goto err; } ret = 1; err: BN_MONT_CTX_free(new_mont); BN_CTX_end(ctx); return ret; } void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, const BN_ULONG *p, size_t num_p, const BN_MONT_CTX *mont) { if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS || num_p > SIZE_MAX / BN_BITS2) { abort(); } assert(BN_is_odd(&mont->N)); // Count the number of bits in |p|, skipping leading zeros. Note this function // treats |p| as public. while (num_p != 0 && p[num_p - 1] == 0) { num_p--; } if (num_p == 0) { bn_from_montgomery_small(r, num, mont->RR.d, num, mont); return; } size_t bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2; assert(bits != 0); // We exponentiate by looking at sliding windows of the exponent and // precomputing powers of |a|. Windows may be shifted so they always end on a // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for // i = 0 to 2^(window-1), all in Montgomery form. unsigned window = BN_window_bits_for_exponent_size(bits); if (window > TABLE_BITS_SMALL) { window = TABLE_BITS_SMALL; // Tolerate excessively large |p|. } BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS]; OPENSSL_memcpy(val[0], a, num * sizeof(BN_ULONG)); if (window > 1) { BN_ULONG d[BN_SMALL_MAX_WORDS]; bn_mod_mul_montgomery_small(d, val[0], val[0], num, mont); for (unsigned i = 1; i < 1u << (window - 1); i++) { bn_mod_mul_montgomery_small(val[i], val[i - 1], d, num, mont); } } // |p| is non-zero, so at least one window is non-zero. To save some // multiplications, defer initializing |r| until then. int r_is_one = 1; size_t wstart = bits - 1; // The top bit of the window. for (;;) { if (!bn_is_bit_set_words(p, num_p, wstart)) { if (!r_is_one) { bn_mod_mul_montgomery_small(r, r, r, num, mont); } if (wstart == 0) { break; } wstart--; continue; } // We now have wstart on a set bit. Find the largest window we can use. unsigned wvalue = 1; unsigned wsize = 0; for (unsigned i = 1; i < window && i <= wstart; i++) { if (bn_is_bit_set_words(p, num_p, wstart - i)) { wvalue <<= (i - wsize); wvalue |= 1; wsize = i; } } // Shift |r| to the end of the window. if (!r_is_one) { for (unsigned i = 0; i < wsize + 1; i++) { bn_mod_mul_montgomery_small(r, r, r, num, mont); } } assert(wvalue & 1); assert(wvalue < (1u << window)); if (r_is_one) { OPENSSL_memcpy(r, val[wvalue >> 1], num * sizeof(BN_ULONG)); } else { bn_mod_mul_montgomery_small(r, r, val[wvalue >> 1], num, mont); } r_is_one = 0; if (wstart == wsize) { break; } wstart -= wsize + 1; } // |p| is non-zero, so |r_is_one| must be cleared at some point. assert(!r_is_one); OPENSSL_cleanse(val, sizeof(val)); } void bn_mod_inverse0_prime_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, const BN_MONT_CTX *mont) { if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) { abort(); } // Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime. BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS]; const BN_ULONG *p = mont->N.d; OPENSSL_memcpy(p_minus_two, p, num * sizeof(BN_ULONG)); if (p_minus_two[0] >= 2) { p_minus_two[0] -= 2; } else { p_minus_two[0] -= 2; for (size_t i = 1; i < num; i++) { if (p_minus_two[i]-- != 0) { break; } } } bn_mod_exp_mont_small(r, a, num, p_minus_two, num, mont); } static void copy_to_prebuf(const BIGNUM *b, int top, BN_ULONG *table, int idx, int window) { int ret = bn_copy_words(table + idx * top, top, b); assert(ret); // |b| is guaranteed to fit. (void)ret; } static int copy_from_prebuf(BIGNUM *b, int top, const BN_ULONG *table, int idx, int window) { if (!bn_wexpand(b, top)) { return 0; } if (exponentiation_use_s2n_bignum()) { exponentiation_s2n_bignum_copy_from_prebuf(b->d, top, table, idx, window); b->width = top; return 1; } OPENSSL_memset(b->d, 0, sizeof(BN_ULONG) * top); const int width = 1 << window; for (int i = 0; i < width; i++, table += top) { // Use a value barrier to prevent Clang from adding a branch when |i != idx| // and making this copy not constant time. Clang is still allowed to learn // that |mask| is constant across the inner loop, so this won't inhibit any // vectorization it might do. BN_ULONG mask = value_barrier_w(constant_time_eq_int(i, idx)); for (int j = 0; j < top; j++) { b->d[j] |= table[j] & mask; } } b->width = top; return 1; } // Window sizes optimized for fixed window size modular exponentiation // algorithm (BN_mod_exp_mont_consttime). #define BN_window_bits_for_ctime_exponent_size 5 // This variant of |BN_mod_exp_mont| uses fixed windows and fixed memory access // patterns to protect secret exponents (cf. the hyper-threading timing attacks // pointed out by Colin Percival, // http://www.daemonology.net/hyperthreading-considered-harmful/) int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) { int i, ret = 0, wvalue; BN_MONT_CTX *new_mont = NULL; unsigned char *powerbuf_free = NULL; size_t powerbuf_len = 0; BN_ULONG *powerbuf = NULL; if (!BN_is_odd(m)) { OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); return 0; } if (m->neg) { OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); return 0; } // |a| is secret, but it is required to be in range, so these comparisons may // be leaked. if (a->neg || constant_time_declassify_int(BN_ucmp(a, m) >= 0)) { OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); return 0; } // Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak // whether the top bits are zero. int max_bits = p->width * BN_BITS2; int bits = max_bits; if (bits == 0) { // x**0 mod 1 is still zero. if (BN_abs_is_word(m, 1)) { BN_zero(rr); return 1; } return BN_one(rr); } // Allocate a montgomery context if it was not supplied by the caller. if (mont == NULL) { new_mont = BN_MONT_CTX_new_consttime(m, ctx); if (new_mont == NULL) { goto err; } mont = new_mont; } // Use the width in |mont->N|, rather than the copy in |m|. The assembly // implementation assumes it can use |top| to size R. int top = mont->N.width; #if defined(OPENSSL_BN_ASM_MONT5) || defined(RSAZ_ENABLED) // Share one large stack-allocated buffer between the RSAZ and non-RSAZ code // paths. If we were to use separate static buffers for each then there is // some chance that both large buffers would be allocated on the stack, // causing the stack space requirement to be truly huge (~10KB). alignas(MOD_EXP_CTIME_ALIGN) BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN]; #endif #if defined(RSAZ_ENABLED) // If the size of the operands allow it, perform the optimized RSAZ // exponentiation. For further information see crypto/fipsmodule/bn/rsaz_exp.c // and accompanying assembly modules. if (a->width == 16 && p->width == 16 && BN_num_bits(m) == 1024 && rsaz_avx2_preferred()) { if (!bn_wexpand(rr, 16)) { goto err; } RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0], storage); rr->width = 16; rr->neg = 0; ret = 1; goto err; } #endif // Get the window size to use with size of p. int window = BN_window_bits_for_ctime_exponent_size; // Calculating |powerbuf_len| below cannot overflow because of the bound on // Montgomery reduction. assert((size_t)top <= BN_MONTGOMERY_MAX_WORDS); OPENSSL_STATIC_ASSERT( BN_MONTGOMERY_MAX_WORDS <= INT_MAX / sizeof(BN_ULONG) / ((1 << BN_window_bits_for_ctime_exponent_size) + 3), powerbuf_len_may_overflow); #if defined(OPENSSL_BN_ASM_MONT5) // Reserve space for the |mont->N| copy. powerbuf_len += top * sizeof(mont->N.d[0]); #endif // Allocate a buffer large enough to hold all of the pre-computed // powers of |am|, |am| itself, and |tmp|. int num_powers = 1 << window; powerbuf_len += sizeof(m->d[0]) * top * (num_powers + 2); #if defined(OPENSSL_BN_ASM_MONT5) if (powerbuf_len <= sizeof(storage)) { powerbuf = storage; } // |storage| is more than large enough to handle 1024-bit inputs. assert(powerbuf != NULL || top * BN_BITS2 > 1024); #endif if (powerbuf == NULL) { powerbuf_free = OPENSSL_zalloc(powerbuf_len + MOD_EXP_CTIME_ALIGN); if (powerbuf_free == NULL) { goto err; } powerbuf = align_pointer(powerbuf_free, MOD_EXP_CTIME_ALIGN); } else { OPENSSL_memset(powerbuf, 0, powerbuf_len); } // Place |tmp| and |am| right after powers table. BIGNUM tmp, am; tmp.d = powerbuf + top * num_powers; am.d = tmp.d + top; tmp.width = am.width = 0; tmp.dmax = am.dmax = top; tmp.neg = am.neg = 0; tmp.flags = am.flags = BN_FLG_STATIC_DATA; if (!bn_one_to_montgomery(&tmp, mont, ctx) || !bn_resize_words(&tmp, top)) { goto err; } // Prepare a^1 in the Montgomery domain. assert(!a->neg); assert(BN_ucmp(a, m) < 0); if (!BN_to_montgomery(&am, a, mont, ctx) || !bn_resize_words(&am, top)) { goto err; } #if defined(OPENSSL_BN_ASM_MONT5) // This optimization uses ideas from https://eprint.iacr.org/2011/239, // specifically optimization of cache-timing attack countermeasures, // pre-computation optimization, and Almost Montgomery Multiplication. // // The paper discusses a 4-bit window to optimize 512-bit modular // exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer // important. // // |bn_mul_mont_gather5| and |bn_power5| implement the "almost" reduction // variant, so the values here may not be fully reduced. They are bounded by R // (i.e. they fit in |top| words), not |m|. Additionally, we pass these // "almost" reduced inputs into |bn_mul_mont|, which implements the normal // reduction variant. Given those inputs, |bn_mul_mont| may not give reduced // output, but it will still produce "almost" reduced output. // // TODO(davidben): Using "almost" reduction complicates analysis of this code, // and its interaction with other parts of the project. Determine whether this // is actually necessary for performance. if (top > 1) { assert(window == 5); // Copy |mont->N| to improve cache locality. BN_ULONG *np = am.d + top; for (i = 0; i < top; i++) { np[i] = mont->N.d[i]; } // Fill |powerbuf| with the first 32 powers of |am|. const BN_ULONG *n0 = mont->n0; bn_scatter5(tmp.d, top, powerbuf, 0); bn_scatter5(am.d, am.width, powerbuf, 1); bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); bn_scatter5(tmp.d, top, powerbuf, 2); // Square to compute powers of two. for (i = 4; i < 32; i *= 2) { bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_scatter5(tmp.d, top, powerbuf, i); } // Compute odd powers |i| based on |i - 1|, then all powers |i * 2^j|. for (i = 3; i < 32; i += 2) { bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); bn_scatter5(tmp.d, top, powerbuf, i); for (int j = 2 * i; j < 32; j *= 2) { bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_scatter5(tmp.d, top, powerbuf, j); } } bits--; for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) { wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); } bn_gather5(tmp.d, top, powerbuf, wvalue); // At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit // that has not been read yet.) assert(bits >= -1 && (bits == -1 || bits % 5 == 4)); // Scan the exponent one window at a time starting from the most // significant bits. if (top & 7) { while (bits >= 0) { for (wvalue = 0, i = 0; i < 5; i++, bits--) { wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); } bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); } } else { const uint8_t *p_bytes = (const uint8_t *)p->d; assert(bits < max_bits); // |p = 0| has been handled as a special case, so |max_bits| is at least // one word. assert(max_bits >= 64); // If the first bit to be read lands in the last byte, unroll the first // iteration to avoid reading past the bounds of |p->d|. (After the first // iteration, we are guaranteed to be past the last byte.) Note |bits| // here is the top bit, inclusive. if (bits - 4 >= max_bits - 8) { // Read five bits from |bits-4| through |bits|, inclusive. wvalue = p_bytes[p->width * BN_BYTES - 1]; wvalue >>= (bits - 4) & 7; wvalue &= 0x1f; bits -= 5; bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); } while (bits >= 0) { // Read five bits from |bits-4| through |bits|, inclusive. int first_bit = bits - 4; uint16_t val; OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val)); val >>= first_bit & 7; val &= 0x1f; bits -= 5; bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val); } } // The result is now in |tmp| in Montgomery form, but it may not be fully // reduced. This is within bounds for |BN_from_montgomery| (tmp < R <= m*R) // so it will, when converting from Montgomery form, produce a fully reduced // result. // // This differs from Figure 2 of the paper, which uses AMM(h, 1) to convert // from Montgomery form with unreduced output, followed by an extra // reduction step. In the paper's terminology, we replace steps 9 and 10 // with MM(h, 1). } else #endif { copy_to_prebuf(&tmp, top, powerbuf, 0, window); copy_to_prebuf(&am, top, powerbuf, 1, window); // If the window size is greater than 1, then calculate // val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) // (even powers could instead be computed as (a^(i/2))^2 // to use the slight performance advantage of sqr over mul). if (window > 1) { if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) { goto err; } copy_to_prebuf(&tmp, top, powerbuf, 2, window); for (i = 3; i < num_powers; i++) { // Calculate a^i = a^(i-1) * a if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) { goto err; } copy_to_prebuf(&tmp, top, powerbuf, i, window); } } bits--; for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) { wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); } if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) { goto err; } // Scan the exponent one window at a time starting from the most // significant bits. while (bits >= 0) { wvalue = 0; // The 'value' of the window // Scan the window, squaring the result as we go for (i = 0; i < window; i++, bits--) { if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) { goto err; } wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); } // Fetch the appropriate pre-computed value from the pre-buf if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) { goto err; } // Multiply the result into the intermediate result if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) { goto err; } } } // Convert the final result from Montgomery to standard format. If we used the // |OPENSSL_BN_ASM_MONT5| codepath, |tmp| may not be fully reduced. It is only // bounded by R rather than |m|. However, that is still within bounds for // |BN_from_montgomery|, which implements full Montgomery reduction, not // "almost" Montgomery reduction. if (!BN_from_montgomery(rr, &tmp, mont, ctx)) { goto err; } ret = 1; err: BN_MONT_CTX_free(new_mont); if (powerbuf != NULL && powerbuf_free == NULL) { OPENSSL_cleanse(powerbuf, powerbuf_len); } OPENSSL_free(powerbuf_free); return ret; } // This is a variant of modular exponentiation optimization that does // parallel 2-primes exponentiation using 256-bit (AVX512VL) // AVX512_IFMA ISA in 52-bit binary redundant representation. If such // instructions are not available, or input data size is not // supported, it falls back to two BN_mod_exp_mont_consttime() calls. // // Computes `rr = a^p mod m` using montgomery multiplication. // // rr[i] - Result // a[i] - Base // p[i] - Exponent // m[i] - Modulus // in_mont[i] - Montgomery multiplication context // ctx - Bignum context. // // The width of each base, exponent, and modulus must match and the // contexts are expected to be initialized. int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1, const BIGNUM *p1, const BIGNUM *m1, const BN_MONT_CTX *in_mont1, BIGNUM *rr2, const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m2, const BN_MONT_CTX *in_mont2, BN_CTX *ctx) { int ret = 0; #ifdef RSAZ_512_ENABLED if (CRYPTO_is_AVX512IFMA_capable() && (((a1->width == 16) && (p1->width == 16) && (BN_num_bits(m1) == 1024) && (a2->width == 16) && (p2->width == 16) && (BN_num_bits(m2) == 1024)) || ((a1->width == 24) && (p1->width == 24) && (BN_num_bits(m1) == 1536) && (a2->width == 24) && (p2->width == 24) && (BN_num_bits(m2) == 1536)) || ((a1->width == 32) && (p1->width == 32) && (BN_num_bits(m1) == 2048) && (a2->width == 32) && (p2->width == 32) && (BN_num_bits(m2) == 2048)))) { int widthn = a1->width; if (!bn_wexpand(rr1, widthn)) { return ret; } if (!bn_wexpand(rr2, widthn)) { return ret; } /* Ensure that montgomery contexts are initialized */ if (in_mont1 == NULL) { return ret; } if (in_mont2 == NULL) { return ret; } if (!BN_is_odd(m1) || !BN_is_odd(m2)) { OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); return 0; } if (m1->neg || m2->neg) { OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); return 0; } if ((a1->neg || BN_ucmp(a1, m1) >= 0) || (a2->neg || BN_ucmp(a2, m2) >= 0)) { OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); return 0; } int mod_bits = BN_num_bits(m1); ret = RSAZ_mod_exp_avx512_x2(rr1->d, a1->d, p1->d, m1->d, in_mont1->RR.d, in_mont1->n0[0], rr2->d, a2->d, p2->d, m2->d, in_mont2->RR.d, in_mont2->n0[0], mod_bits); rr1->width = widthn; rr1->neg = 0; rr2->width = widthn; rr2->neg = 0; } else { // rr1 = a1^p1 mod m1 ret = BN_mod_exp_mont_consttime(rr1, a1, p1, m1, ctx, in_mont1); // rr2 = a2^p2 mod m2 ret &= BN_mod_exp_mont_consttime(rr2, a2, p2, m2, ctx, in_mont2); } #else /* rr1 = a1^p1 mod m1 */ ret = BN_mod_exp_mont_consttime(rr1, a1, p1, m1, ctx, in_mont1); /* rr2 = a2^p2 mod m2 */ ret &= BN_mod_exp_mont_consttime(rr2, a2, p2, m2, ctx, in_mont2); #endif return ret; } int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) { BIGNUM a_bignum; BN_init(&a_bignum); int ret = 0; // BN_mod_exp_mont requires reduced inputs. if (bn_minimal_width(m) == 1) { a %= m->d[0]; } if (!BN_set_word(&a_bignum, a)) { OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR); goto err; } ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont); err: BN_free(&a_bignum); return ret; } #define TABLE_SIZE 32 int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) { BIGNUM tmp; BN_init(&tmp); int ret = 0; BN_MONT_CTX *new_mont = NULL; // Allocate a montgomery context if it was not supplied by the caller. if (mont == NULL) { new_mont = BN_MONT_CTX_new_for_modulus(m, ctx); if (new_mont == NULL) { goto err; } mont = new_mont; } // BN_mod_mul_montgomery removes one Montgomery factor, so passing one // Montgomery-encoded and one non-Montgomery-encoded value gives a // non-Montgomery-encoded result. if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) || !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) || !BN_to_montgomery(rr, rr, mont, ctx) || !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) { goto err; } ret = 1; err: BN_MONT_CTX_free(new_mont); BN_free(&tmp); return ret; }